Study of High-spin States for 90,91,92Y Isotopes by Using Oxbash Code

2021 ◽  
Vol 14 (1) ◽  
pp. 25-33

Abstract: In this paper, calculations of 90,91,92Y isotopes have been performed by application of nuclear shell model in the Gloeckner (Gl) model space for two different interactions (Gloeckner (Gl) and Gloeckner pulse bare G-Matrix (Glb) using Oxbash code. The energy levels are compared and discussed with experimental data and based on our results, many predictions about spins and parity were observed between experimental states, in addition to the predictions of low-energy spectra and B (E2; ↓) and B (M1; ↓)) transitional strengths in the isotopes 90,91,92Y. These predictions were not known in the experimental data. Keywords: Energy levels, Transition probabilities, Oxbash code.

Author(s):  
Ali Hasan ◽  
Fatema Obeed ◽  
Azahr Rahim

The nuclear shell-model has been used to compute excitation levels of ground band and electric quadrupole transitions for 50-51Mn isotopes in f-shell. In the present study, f742pn and f7cdpn effective interactions have been carried out in full f-shell by using Oxbash Code. The radial wave functions of the single-particle matrix elements have been calculated in terms of the harmonic oscillator (Ho) and Skyrme20 potentials. The predicted theoretical results have been compared with the available experimental data; it has been seen that the predicted results are in agreement with the experimental data. From the current results of the calculations, many predictions of angular momentum and parities of experimental states have been made, and the energy spectra predictions of the ground band and B(E2; ↓) electric quadrupole transitions in 50-51Mn isotopes of the experimental data are not known yet. In the nuclear shell-model calculations framework, energy levels have been determined for 50-51Mn isotopes; new values of electric quadrupole transitions have been predicted in the studied results. This investigation increases the theoretical knowledge of all isotopes with respect to the energy levels and reduced transition probabilities.


2019 ◽  
Vol 24 (3) ◽  
pp. 100
Author(s):  
Firas Zuhair Majeed1 ◽  
, Ammar A. Battawy2 ◽  
Muhanned A. Ahmed2

Energy levels, total angular momenta and parity for two nucleons that present outside closed core 56Ni (Nickel) which occupied FP nuclear shell have been calculated using nuclear shell model application. We have used FP M3YE interaction to calculate energy levels of 58Ni, in addition, the results are compared with experimental data, modified surface delta interaction (MSDI), Reid's potential (RP) and non-zero pairing shell model (NZPSM). Harmonic Oscillator potential is used to generate single particle wave functions in FP shell and considering  as an inert core. Oxford Buenos Aires Shell Model (OXBASH) code for nuclear shell model calculation has been utilized to carry out the calculations and comparison with experimental data had been done.   http://dx.doi.org/10.25130/tjps.24.2019.054 


2021 ◽  
Vol 66 (8) ◽  
pp. 643
Author(s):  
F.H. Obeed

The nuclear shell model has been applied to calculate the yrast energy levels, quadrupole transition probability (BE2), deformation parameter B2, rotational energy (hw), and inertia moment (20/h2) for the ground state band. The NuShellX@MSU code has been used to determine the nuclear properties of 56−62Fe isotopes, by using the harmonic oscillator (HO) model space for P (1f7/2), N (2p3/2), N (1f5/2), and N (2p1/2) orbits and (HO) interaction. The results are in good agreement with the available experimental data on the above nuclear properties and all nuclei under study. In addition, the back bending phenomenon has been explained by the calculations, and it has been very clear in 58,60,62Fe nuclei. It has also been confirmed and determined the most spins and parities of energy levels. In these calculations, new values have been theoretically determined for the most nuclear properties which were previously experimentally unknown.


2020 ◽  
Vol 18 ◽  
pp. 58-65
Author(s):  
Ali K. Hasan ◽  
Wafaa Al-mudhafar

In this study, the nuclear shell model was applied to calculate the energy levels and reduced electric quadruple transition probability B(E2) for 36Si isotope using the OXBASH code within (1d3/2, 2s1/2, 2p3/2, 1f7/2) model space and using (HASN, ZBM2 and VPTH) interactions, As this isotope contains eight neutrons outside 28Si  core in the region and when comparing the results of this study with the values. Available process compatibility was acceptable. There was good agreement at level 2+1, and angular momentum and parity were confirmed for levels 4+, 6+, and for all interactions, and the value of B(E2) corresponds well with the only practical value available for the transition .


2006 ◽  
Vol 15 (02) ◽  
pp. 379-386 ◽  
Author(s):  
L. PRÓCHNIAK

Low energy quadrupole collective excitations are investigated using a model based on the Adiabatic Time Dependent HFB theory. Distinctive feature of proposed method is an extension of the collective space by adding variables referring to pairing degrees of freedom. In the microscopic part of the model effective Skyrme interaction and constant G pairing force are employed. Calculated energy levels and B(E2) transition probabilities in the 128 Xe nucleus are compared with the experimental data.


2020 ◽  
Vol 29 (05) ◽  
pp. 2050027
Author(s):  
Musa M. Mahdi ◽  
Falih H. Al-Khudair

Energy levels and electromagnetic transition probabilities of odd-mass [Formula: see text] and [Formula: see text] isotopes have been calculated using the interacting boson fermion model. The even–even [Formula: see text] isotopes have been used as the cores. In the model space, the bosons have angular momentum, [Formula: see text] ([Formula: see text]-boson) and [Formula: see text] ([Formula: see text]-boson) have been considered, while the nine protons for [Formula: see text] and 19–25 neutrons for [Formula: see text] are allowed to occupy the [Formula: see text] and [Formula: see text] single particle orbitals. The quasi-particle energies and occupation probabilities have been obtained by solving the BCS equation. According to the model space, the wave function for low-lying states has been investigated. The calculated results are in good agreement with the available experimental data.


2020 ◽  
Vol 65 (1) ◽  
pp. 3
Author(s):  
A. K. Hasan ◽  
F. H. Obeed ◽  
A. N. Rahim

The energy levels and transition probabilities B(E2; ↓) i B(M1; ↓) have been investigated for 21,23Na isotopes by using the (USDA and USDB) interactions in the (sd-shell) model space. In the calculations of the shell model, it has been assumed that all possible many-nucleon configurations are specified by the (0d5/2, 1s1/2 i 0d3/2) states above 16O doubly magic nucleus. The available empirical data are in a good agreement with predictions of theoretical energy levels. Spins and parities are affirmed for new levels, transition probabilities B(E2; ↓) and B(M1; ↓) are predicted as well.


1976 ◽  
Vol 277 (3) ◽  
pp. 273-290 ◽  
Author(s):  
C. G. Lind�n ◽  
I. Bergstr�m ◽  
J. Blomqvist ◽  
K. -G. Rensfelt ◽  
H. Sergolle ◽  
...  

1982 ◽  
Vol 376 (3) ◽  
pp. 451-462 ◽  
Author(s):  
L.K. Kostov ◽  
H. Rotter ◽  
C. Heiser ◽  
H. Prade ◽  
F. Stary ◽  
...  

2021 ◽  
Vol 66 (4) ◽  
pp. 293
Author(s):  
A.A. Al-Sammarraie ◽  
F.A. Ahmed ◽  
A.A. Okhunov

The negative-parity states of 24Mg nucleus are investigated within the shell model. We are based on the calculations of energy levels, total squared form factors, and transition probability using the p-sd-pf (PSDPF) Hamiltonian in a large model space (0 + 1) hW. The comparison between the experimental and theoretical states showed a good agreement within a truncated model space. The PSDPF-based calculations successfully reproduced the data on the total squared form factors and transition probabilities of the negative-parity states in 24Mg nucleus. These quantities depend on the one-body density matrix elements that are obtained from the PSDPF Hamiltonian. The wave functions of radial one-particle matrix elements calculated with the harmonic-oscillator potential are suitable to predict experimental data by changing the center-of-mass corrections.


Sign in / Sign up

Export Citation Format

Share Document