manganese superoxide dismutases
Recently Published Documents


TOTAL DOCUMENTS

43
(FIVE YEARS 3)

H-INDEX

16
(FIVE YEARS 1)

Author(s):  
Zhi Li ◽  
Yunpeng Zhong ◽  
Danfeng Bai ◽  
Muhammad Abid ◽  
Yongjie Zhang ◽  
...  

Kiwifruit vines are generally sensitive to waterlogging stress. So far, molecular responses of different kiwifruit genotypes for waterlogging stress are less well-explored. In this study, using RNA-sequencing, we examined transcriptional regulation in the roots of a waterlogging-tolerant genotype KR5 (Actinidia valvata), and a sensitive genotype ‘Hayward’ (Actinidia deliciosa) subjected to 0, 12, 24, and 72 h of waterlogging. Compared with 0 h, transcriptional adjustments of these two genotypes occurred as early as 12 h and became notably pronounced 72 h after waterlogging. Waterlogging stress for 72 h promoted the expression of genes involved in ethylene biosynthesis, sucrose and hexose transport, anaerobic fermentation, nitrate reduction, alanine accumulation, and reactive oxygen scavenging in both genotypes. The differential regulation of genes encoding 9-cis-epoxycarotenoid dioxygenase, phosphoglucomutase, alanine-glyoxylate transaminase, and other enzymes pointed to their diverse strategies upon waterlogging in these two genotypes. In addition, more sucrose and trehalose contents, as well as a higher activity of alcohol dehydrogenase and manganese superoxide dismutases were stimulated in KR5 roots after 72h of waterlogging than that in ‘Hayward’. Overall, our results provided more insights into the molecular basis of the waterlogging response in kiwifruit.


2019 ◽  
Vol 60 (8) ◽  
pp. 1880-1891 ◽  
Author(s):  
Aline F Hell ◽  
Francisco Gasulla ◽  
Mar�a Gonz�lez-Hourcade ◽  
Eva M del Campo ◽  
Danilo C Centeno ◽  
...  

Abstract Oxidative stress is a crucial challenge for lichens exposed to cyclic desiccation and rehydration (D/R). However, strategies to overcome this potential stress are still being unraveled. Therefore, the physiological performance and antioxidant mechanisms of two lichen microalgae, Trebouxia sp. (TR9) and Coccomyxa simplex (Csol), were analyzed. TR9 was isolated from Ramalina farinacea, a Mediterranean fruticose epiphytic lichen adapted to xeric habitats, while Csol is the phycobiont of Solorina saccata, a foliaceous lichen that grows on humid rock crevices. The tolerance to desiccation of both species was tested by subjecting them to different drying conditions and to four consecutive daily cycles of D/R. Our results show that a relative humidity close to that of their habitats was crucial to maintain the photosynthetic rates. Concerning antioxidant enzymes, in general, manganese superoxide dismutases (MnSODs) were induced after desiccation and decreased after rehydration. In TR9, catalase (CAT)-A increased, and its activity was maintained after four cycles of D/R. Ascorbate peroxidase activity was detected only in Csol, while glutathione reductase increased only in TR9. Transcript levels of antioxidant enzymes indicate that most isoforms of MnSOD and FeSOD were induced by desiccation and repressed after rehydration. CAT2 gene expression was also upregulated and maintained at higher levels even after four cycles of D/R in accordance with enzymatic activities. To our knowledge, this is the first study to include the complete set of the main antioxidant enzymes in desiccation-tolerant microalgae. The results highlight the species-specific induction of the antioxidant system during cyclic D/R, suggesting a priming of oxidative defence metabolism.


2015 ◽  
Vol 34 (12) ◽  
pp. 2137-2149 ◽  
Author(s):  
Xiaofei Zeng ◽  
Neng Cheng ◽  
Xingfei Zheng ◽  
Ying Diao ◽  
Gen Fang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document