Tolerance to Cyclic Desiccation in Lichen Microalgae is Related to Habitat Preference and Involves Specific Priming of the Antioxidant System

2019 ◽  
Vol 60 (8) ◽  
pp. 1880-1891 ◽  
Author(s):  
Aline F Hell ◽  
Francisco Gasulla ◽  
Mar�a Gonz�lez-Hourcade ◽  
Eva M del Campo ◽  
Danilo C Centeno ◽  
...  

Abstract Oxidative stress is a crucial challenge for lichens exposed to cyclic desiccation and rehydration (D/R). However, strategies to overcome this potential stress are still being unraveled. Therefore, the physiological performance and antioxidant mechanisms of two lichen microalgae, Trebouxia sp. (TR9) and Coccomyxa simplex (Csol), were analyzed. TR9 was isolated from Ramalina farinacea, a Mediterranean fruticose epiphytic lichen adapted to xeric habitats, while Csol is the phycobiont of Solorina saccata, a foliaceous lichen that grows on humid rock crevices. The tolerance to desiccation of both species was tested by subjecting them to different drying conditions and to four consecutive daily cycles of D/R. Our results show that a relative humidity close to that of their habitats was crucial to maintain the photosynthetic rates. Concerning antioxidant enzymes, in general, manganese superoxide dismutases (MnSODs) were induced after desiccation and decreased after rehydration. In TR9, catalase (CAT)-A increased, and its activity was maintained after four cycles of D/R. Ascorbate peroxidase activity was detected only in Csol, while glutathione reductase increased only in TR9. Transcript levels of antioxidant enzymes indicate that most isoforms of MnSOD and FeSOD were induced by desiccation and repressed after rehydration. CAT2 gene expression was also upregulated and maintained at higher levels even after four cycles of D/R in accordance with enzymatic activities. To our knowledge, this is the first study to include the complete set of the main antioxidant enzymes in desiccation-tolerant microalgae. The results highlight the species-specific induction of the antioxidant system during cyclic D/R, suggesting a priming of oxidative defence metabolism.

Author(s):  
O. I. Horielova ◽  
◽  
N. I. Ryabchun ◽  
M. A. Shkliarevskyi ◽  
A. M. Reznik ◽  
...  

Along with specific adaptive reactions, universal defense reactions, in particular activation of antioxidant system, are of great importance for plant survival under cold conditions. We have studied a relationship among the content of low-molecular-weight protective compounds with antioxidant properties (proline, soluble carbohydrates, flavonoids), the activity of antioxidant enzymes (superoxide dismutase, catalase, and guaiacol peroxidase) in seedlings of winter wheat, rye and triticale, and frost resistance of etiolated seedlings and adult plants at tillering stage. It was found that there was a fairly close correlation between the frost resistance of seedlings and adult cereal plants (r = 0,78). It was shown that a pronounced relationship between individual indicators of antioxidant system functioning in unhardened seedlings and their frost resistance was not found. After 6-day hardening of seedlings at 2-4°C, there was a high correlation between the total indicator of the enzymatic antioxidant system (the sum of normalized indicators of superoxide dismutase, peroxidase, and catalase activity) and their frost resistance (r = 0,86), but the correlation coefficient of this index with frost resistance of plants in tillering phase was significantly lower (r = 0,47). At the same time, a high correlation was found between the content of low-molecular-weight protectors in hardened seedlings and frost resistance of tillering adult plants (r = 0.89). The closest correlation was observed between the integral normalized indicator, comprising the sum of normalized values of antioxidant enzymes activity and the content of low-molecular-weight protectors in hardened seedlings, and frost resistance of seedlings (r = 0,94) and plants in tillering phase (r = 0,89). A presence of specific features in the functioning of antioxidant system during cold adaptation of cereal seedlings was established. Rye is characterized by a high content of low-molecular-weight protective compounds; at the same time, increased activity of antioxidant enzymes - superoxide dismutase and catalase - was noted in wheat seedlings. In triticale, depending on the genotype, the values of both enzymatic antioxidant activity and the content of low-molecular-weight protectors varied.


2021 ◽  
Vol 90 (1) ◽  
pp. 21-32
Author(s):  
O.M. Kovalyova ◽  
T.M. Pasiieshvili

The article is devoted to the antioxidant system of the human body in the context of biological and medical significance. The classification of antioxidants in terms of their physical and chemical properties, bioorganic compounds, biochemical effects, mechanisms of implementation of antioxidant protection is presented. The given processes of extreme radical oxidation and mechanisms of antioxidant defense in physiological and pathological conditions. The characteristics of the components of the glutathione system, namely glutathione and enzymes – glutathione peroxidase, glutathione reductase and glutathione transferase are presented. Much attention is paid to manganese superoxide dismutase, an antiradical defense enzyme, as a fundamental regulator of cell proliferation, a mediator of metabolism and apoptosis. Interpretation of changes in the antioxidant enzyme of mitochondrial origin from a prognostic point of view is interpreted on the basis of the results of clinical observations carried out by scientists in various human diseases. The expediency of determining manganese superoxide dismutase in clinical practice for the diagnostic search for the direction of the pathological process, the timely detection of complications and the appointment of adequate therapy is emphasized. Keywords: antioxidant system, classification, glutathione system, manganese superoxide dismutase.


1989 ◽  
Vol 22 (3) ◽  
pp. 351-365 ◽  
Author(s):  
KAZUSHIGE DOBASHI ◽  
KOHTARO ASAYAMA ◽  
KIYOHIKO KATO ◽  
MAKIO KOBAYASHI ◽  
AKIRA KAWAOI

1992 ◽  
Vol 263 (4) ◽  
pp. L466-L470 ◽  
Author(s):  
L. B. Clerch ◽  
D. Massaro

The lung activity of the antioxidant enzymes (AOEs) copper, zinc superoxide dismutase (Cu,Zn SOD), catalase (CAT), and glutathione peroxidase (GP), but not manganese superoxide dismutase (Mn SOD), increases in rats during late gestation; the concentrations of Cu,Zn SOD mRNA and CAT mRNA also rise. During early postnatal exposure to > 95% O2, the lung activity of Cu,Zn SOD, CAT, and GP increases. We now show 1) the lung concentration of Mn SOD mRNA and GP mRNA does not increase in late gestation; 2) Mn SOD activity and the concentration of its mRNA and of GP mRNA increase during exposure of neonatal rats to > 95% O2; and 3) as previously shown for CAT mRNA, the increase in lung concentration of the mRNAs for Cu,Zn SOD, Mn SOD, and GP during early postnatal hyperoxia occurs with a 70–80% prolongation of the half-life of these mRNAs. We conclude that 1) in late gestation the level at which lung AOE gene expression is regulated differs among the enzymes, 2) the level at which lung AOE gene expression is regulated shortly after birth in response to > 95% O2 is uniform among the enzymes, and 3) the lung's AOE response to neonatal hyperoxia is not merely a step-up of its prenatal regulation but involves different regulatory mechanisms based on increased stability of AOE mRNAs


Author(s):  
Hui Song ◽  
You-Shao Wang ◽  
Cui-Ci Sun ◽  
Mei-Lin Wu ◽  
Ya-Lan Peng ◽  
...  

AbstractThe antioxidant system effects of Kandelia candel were investigated under four different levels of PAH stress. The activities of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD), the responses to the change of malondialdehyde (MDA) contents and the accumulation of proline in K. candel were determined. Our results suggested that the activities of SOD, CAT, POD increased significantly in leaves and roots of K. candel (p≤0.05) with the increase of the external PAH concentrations, while in stems, the activities of these antioxidant enzymes were all significantly inhibited (p≤0.01). We also observed an increase of MDA in leaves, stems and roots, and an obvious correlation between MDA content and PAH concentrations in three locations, which showed that the change of MDA content could be used as a biomarker of K. candel under PAH stress. The proline content was found remarkably enhanced in leaves, stems and roots. However, a significant inverse correlation was observed between the proline content and SOD (r=−0.99, p≤0.01), POD (r=−0.95, p≤0.05) activities in stems. This study suggested that the antioxidative system of K. candel has an obvious organ-dependent feature when exposed to PAH contamination as revealed by discriminant analysis (DA).


Sign in / Sign up

Export Citation Format

Share Document