micro electrode arrays
Recently Published Documents


TOTAL DOCUMENTS

84
(FIVE YEARS 13)

H-INDEX

18
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Jens Duru ◽  
Joel Kuechler ◽  
Stephan Johannes Ihle ◽  
Csaba Forro ◽  
Aeneas Bernardi ◽  
...  

In bottom-up neuroscience, questions on neural information processing are addressed by engineering small but reproducible biological neural networks of defined network topology \textit{in vitro}. The network topology can be controlled by culturing neurons within polydimethylsiloxane (PDMS) microstructures that are combined with microelectrode arrays (MEAs) for electric access to the network. However, currently used glass MEAs are limited to 256 electrodes and pose a limitation to the spatial resolution as well as the design of more complex microstructures. The use of high density complementary metal-oxide-semiconductor (CMOS) MEAs greatly increases the spatiotemporal resolution, enabling sub-cellular readout and stimulation of neurons in defined neural networks. Unfortunately, the non-planar surface of CMOS MEAs complicates the attachment of PDMS microstructures. To overcome the problem of axons escaping the microstructures through the ridges of the CMOS MEA, we stamp-transferred a thin film of hexane-diluted PDMS onto the array such that the PDMS filled the ridges at the contact surface of the microstructures without clogging the axon guidance channels. Moreover, we provide an impedance-based method to visualize the exact location of the microstructures on the MEA and show that our method can confine axonal growth within the PDMS microstructures. Finally, the high spatiotemporal resolution of the CMOS MEA enabled us to show that we can guide action potentials using the unidirectional topology of our circular multi-node microstructure.


2021 ◽  
Vol 4 (s1) ◽  
Author(s):  
Martina Brofiga ◽  
Marietta Pisano ◽  
Mariateresa Tedesco ◽  
Francesca Callegari ◽  
Paolo Massobrio

In this work, we present a novel experimental platform to build in vitro interconnected (i.e., modular) heterogeneous (e.g., cortical-hippocampal) and three-dimensional (3D) neuronal cultures plated on Micro-Electrode Arrays (MEAs) to extracellularly record the electrophysiological activity continuously.


Author(s):  
Britt Mossink ◽  
Anouk H.A. Verboven ◽  
Eline J.H. van Hugte ◽  
Teun M. Klein Gunnewiek ◽  
Giulia Parodi ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3544
Author(s):  
Robert Daly ◽  
Tarun Narayan ◽  
Han Shao ◽  
Alan O’Riordan ◽  
Pierre Lovera

Water is a precious resource that is under threat from a number of pressures, including, for example, release of toxic compounds, that can have damaging effect on ecology and human health. The current methods of water quality monitoring are based on sample collection and analysis at dedicated laboratories. Recently, electrochemical-based methods have attracted a lot of attention for environmental sensing owing to their versatility, sensitivity and their ease of integration with cost effective, smart and portable readout systems. In the present work, we report on the fabrication and characterization of platinum-based interdigitated microband electrodes arrays, and their application for trace detection of copper. Using square wave voltammetry after acidification with mineral acids, a limit of detection of 0.8 μg/L was achieved. Copper detection was also undertaken on river water samples and compared with standard analytical techniques. The possibility of controlling the pH at the surface of the sensors—thereby avoiding the necessity to add mineral acids—was investigated. By applying potentials to drive the water splitting reaction at one comb of the sensor’s electrode (the protonator), it was possible to lower the pH in the vicinity of the sensing electrode. Detection of standard copper solutions down to 5 μg/L (ppb) using this technique is reported. This reagent free method of detection opens the way for autonomous, in situ monitoring of pollutants in water bodies.


Author(s):  
Britt Mossink ◽  
Jon-Ruben van Rhijn ◽  
Shan Wang ◽  
Katrin Linda ◽  
Maria R. Vitale ◽  
...  

AbstractActivity in the healthy brain relies on a concerted interplay of excitation (E) and inhibition (I) via balanced synaptic communication between glutamatergic and GABAergic neurons. A growing number of studies imply that disruption of this E/I balance is a commonality in many brain disorders; however, obtaining mechanistic insight into these disruptions, with translational value for the patient, has typically been hampered by methodological limitations. Cadherin-13 (CDH13) has been associated with autism and attention-deficit/hyperactivity disorder. CDH13 localizes at inhibitory presynapses, specifically of parvalbumin (PV) and somatostatin (SST) expressing GABAergic neurons. However, the mechanism by which CDH13 regulates the function of inhibitory synapses in human neurons remains unknown. Starting from human-induced pluripotent stem cells, we established a robust method to generate a homogenous population of SST and MEF2C (PV-precursor marker protein) expressing GABAergic neurons (iGABA) in vitro, and co-cultured these with glutamatergic neurons at defined E/I ratios on micro-electrode arrays. We identified functional network parameters that are most reliably affected by GABAergic modulation as such, and through alterations of E/I balance by reduced expression of CDH13 in iGABAs. We found that CDH13 deficiency in iGABAs decreased E/I balance by means of increased inhibition. Moreover, CDH13 interacts with Integrin-β1 and Integrin-β3, which play opposite roles in the regulation of inhibitory synaptic strength via this interaction. Taken together, this model allows for standardized investigation of the E/I balance in a human neuronal background and can be deployed to dissect the cell-type-specific contribution of disease genes to the E/I balance.


2021 ◽  
Author(s):  
B. Mossink ◽  
A.H.A. Verboven ◽  
E.J.H. van Hugte ◽  
T.M. Klein Gunnewiek ◽  
G. Parodi ◽  
...  

AbstractMicro-electrode arrays (MEAs) are increasingly used to characterize neuronal network activity of human induced pluripotent stem-cell (hiPSC)-derived neurons. Despite their gain in popularity, MEA recordings from hiPSC-derived neuronal networks are not always used to their full potential in respect to experimental design, execution and data analysis. Therefore, we benchmarked the robustness and sensitivity of MEA-derived neuronal activity patterns derived from ten healthy individual control lines. We provide recommendations on experimental design and analysis to achieve standardization. With such standardization, MEAs can be used as a reliable platform to distinguish (disease-specific) network phenotypes. In conclusion, we show that MEAs are a powerful and robust tool to uncover functional neuronal network phenotypes from hiPSC-derived neuronal networks, and provide an important resource to advance the hiPSC field towards the use of MEAs for disease-phenotyping and drug discovery.


Micromachines ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 830
Author(s):  
Wataru Minoshima ◽  
Kyoko Masui ◽  
Tomomi Tani ◽  
Yasunori Nawa ◽  
Satoshi Fujita ◽  
...  

The excitatory synaptic transmission is mediated by glutamate (GLU) in neuronal networks of the mammalian brain. In addition to the synaptic GLU, extra-synaptic GLU is known to modulate the neuronal activity. In neuronal networks, GLU uptake is an important role of neurons and glial cells for lowering the concentration of extracellular GLU and to avoid the excitotoxicity. Monitoring the spatial distribution of intracellular GLU is important to study the uptake of GLU, but the approach has been hampered by the absence of appropriate GLU analogs that report the localization of GLU. Deuterium-labeled glutamate (GLU-D) is a promising tracer for monitoring the intracellular concentration of glutamate, but physiological properties of GLU-D have not been studied. Here we study the effects of extracellular GLU-D for the neuronal activity by using primary cultured rat hippocampal neurons that form neuronal networks on microelectrode array. The frequency of firing in the spontaneous activity of neurons increased with the increasing concentration of extracellular GLU-D. The frequency of synchronized burst activity in neurons increased similarly as we observed in the spontaneous activity. These changes of the neuronal activity with extracellular GLU-D were suppressed by antagonists of glutamate receptors. These results suggest that GLU-D can be used as an analog of GLU with equivalent effects for facilitating the neuronal activity. We anticipate GLU-D developing as a promising analog of GLU for studying the dynamics of glutamate during neuronal activity.


2020 ◽  
pp. 529-536
Author(s):  
O KLEMPÍŘ ◽  
R KRUPIČKA ◽  
J KRŮŠEK ◽  
I DITTERT ◽  
V PETRÁKOVÁ ◽  
...  

In this work we report on the implementation of methods for data processing signals from microelectrode arrays (MEA) and the application of these methods for signals originated from two types of MEAs to detect putative neurons and sort them into subpopulations. We recorded electrical signals from firing neurons using titanium nitride (TiN) and boron doped diamond (BDD) MEAs. In previous research, we have shown that these methods have the capacity to detect neurons using commercially-available TiN-MEAs. We have managed to cultivate and record hippocampal neurons for the first time using a newly developed custom-made multichannel BDD-MEA with 20 recording sites. We have analysed the signals with the algorithms developed and employed them to inspect firing bursts and enable spike sorting. We did not observe any significant difference between BDD- and TiN-MEAs over the parameters, which estimated spike shape variability per each detected neuron. This result supports the hypothesis that we have detected real neurons, rather than noise, in the BDD-MEA signal. BDD materials with suitable mechanical, electrical and biocompatibility properties have a large potential in novel therapies for treatments of neural pathologies, such as deep brain stimulation in Parkinson’s disease.


2020 ◽  
Author(s):  
Britt Mossink ◽  
Jon-Ruben van Rhijn ◽  
Shan Wang ◽  
Eline J. H. van Hugte ◽  
Katrin Linda ◽  
...  

SummaryActivity in the healthy brain relies on concerted interplay of excitation (E) and inhibition (I) via balanced synaptic communication between glutamatergic and GABAergic neurons. A growing number of studies imply that disruption of this E/I balance is a commonality in many brain disorders, however, obtaining mechanistic insight into these disruptions, with translational value for the human patient, has typically been hampered by methodological limitations. Cadherin-13 (CDH13) has strongly been associated to attention-deficit/hyperactivity disorder and comorbid disorders such as autism and schizophrenia. CDH13 localises at inhibitory presynapses, specifically of parvalbumin (PV) and somatostatin (SST) expressing GABAergic neurons. However, the mechanism by which CDH13 regulates the function of inhibitory synapses in human neurons remains unknown. Starting from human induced pluripotent stem cells, we established a robust method to generate a homogenous population of SST and PV expressing GABAergic neurons (iGABA) in vitro, and co-cultured these with glutamatergic neurons at defined E/I ratios on micro-electrode arrays. We identified functional network parameters that are most reliably affected by GABAergic modulation as such, and through alterations of E/I balance by reduced expression of CDH13 in iGABAs. We found that CDH13-deficiency in iGABAs decreased E/I balance by means of increased inhibition. Moreover, CDH13 interacts with Integrin-β1 and Integrin-β3, which play opposite roles in the regulation of inhibitory synaptic strength via this interaction. Taken together, this model allows for standardized investigation of the E/I balance in a human neuronal background and can be deployed to dissect the cell-type specific contribution of disease genes to the E/I balance.


Sign in / Sign up

Export Citation Format

Share Document