ramped pyrolysis
Recently Published Documents


TOTAL DOCUMENTS

16
(FIVE YEARS 5)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Author(s):  
◽  
Simon Reeve

<p>Archives of the retreat history of the Antarctic Ice Sheet since the Last Glacial Maximum (~20,000 years ago) are preserved in marine sediment cores from around the margins of Antarctica, but accurate dating methods remain elusive in many areas. Radiocarbon dating of key lithofacies transitions indicative of grounding-line retreat is problematic due to pervasive reworking issues in glacimarine sediments. Bulk sediment material can be radiocarbon dated but yields ages which are not indicative of the time of sedimentation due to the presence of reworked carbon material from pre-Last Glacial Maximum times. Consequently, development of methods to date only the autochthonous carbon component of these sediments are required to date the retreat of the Last Glacial Maximum ice sheet in Antarctica. A new radiocarbon dating capability has been developed at Rafter Radiocarbon Laboratory (RRL), National Isotope Centre, GNS Science, Lower Hutt, in the course of this study. This has entailed designing, building and testing a ramped pyrolysis (RP) system, in which sedimentary material is heated from ambient to ~1000oC in the absence of oxygen (pyrolysed), with the carbon liberated during pyrolysis being combined with oxygen at a temperature of ~800oC to produce CO2. The amount of CO2 produced is measured by a gas analyser and the CO2 is captured in a vacuum line. The method exploits the thermochemical behaviour of degraded organic carbon. Organic carbon which has been least degraded with time breaks down earliest under pyrolysis, so CO2 captured from this fraction most closely approximates the time of deposition of the sediment. CO2 captured at higher temperatures represents more degraded carbon-containing fractions and yields older ages. The RP system includes a gas delivery system to deliver ultra-high purity He (carrier gas) and O2, a furnace system in which to pyrolyse sample material and oxidise the liberated carbon, a CO2 detection system to measure the CO2 produced and a vacuum line system to enable simultaneous collection and processing of CO2. The RRL system was based on the design developed by Dr Brad Rosenheim (University of South Florida (USF)), the originator of the first RP system at the National Ocean Sciences AMS Facility (Woods Hole Oceanographic Institution, Massachusetts, USA), who also provided guidance in this thesis. As part of the study, a visit to USF was undertaken, with sediment samples from Crystal Sound, Antarctic Peninsula being processed in the USF RP system. CO2 collected from RP processing was radiocarbon dated at RRL. The scope of this thesis was to develop and build the RRL RP system, and numerous tests were conducted during this process and are presented in this thesis. As part of this, sediment samples from Crystal Sound were also processed on the RRL RP system, and an interlaboratory comparison was conducted on the same materials processed independently through both the USF and RRL RP systems. In the development and testing of the RRL system, numerous issues were identified and a set of operating protocols developed. Due to time constraints and the scope of this thesis, interlaboratory comparisons were limited in number, but initial results show good reproducibility, and that ramped pyrolysis captured significantly younger carbon populations in both the USF and RRL RP systems than methods using bulk sediment dating alone. Within uncertainties, the ages of the youngest and oldest splits from RP processing of the same material on both systems were indistinguishable.</p>


2021 ◽  
Author(s):  
◽  
Simon Reeve

<p>Archives of the retreat history of the Antarctic Ice Sheet since the Last Glacial Maximum (~20,000 years ago) are preserved in marine sediment cores from around the margins of Antarctica, but accurate dating methods remain elusive in many areas. Radiocarbon dating of key lithofacies transitions indicative of grounding-line retreat is problematic due to pervasive reworking issues in glacimarine sediments. Bulk sediment material can be radiocarbon dated but yields ages which are not indicative of the time of sedimentation due to the presence of reworked carbon material from pre-Last Glacial Maximum times. Consequently, development of methods to date only the autochthonous carbon component of these sediments are required to date the retreat of the Last Glacial Maximum ice sheet in Antarctica. A new radiocarbon dating capability has been developed at Rafter Radiocarbon Laboratory (RRL), National Isotope Centre, GNS Science, Lower Hutt, in the course of this study. This has entailed designing, building and testing a ramped pyrolysis (RP) system, in which sedimentary material is heated from ambient to ~1000oC in the absence of oxygen (pyrolysed), with the carbon liberated during pyrolysis being combined with oxygen at a temperature of ~800oC to produce CO2. The amount of CO2 produced is measured by a gas analyser and the CO2 is captured in a vacuum line. The method exploits the thermochemical behaviour of degraded organic carbon. Organic carbon which has been least degraded with time breaks down earliest under pyrolysis, so CO2 captured from this fraction most closely approximates the time of deposition of the sediment. CO2 captured at higher temperatures represents more degraded carbon-containing fractions and yields older ages. The RP system includes a gas delivery system to deliver ultra-high purity He (carrier gas) and O2, a furnace system in which to pyrolyse sample material and oxidise the liberated carbon, a CO2 detection system to measure the CO2 produced and a vacuum line system to enable simultaneous collection and processing of CO2. The RRL system was based on the design developed by Dr Brad Rosenheim (University of South Florida (USF)), the originator of the first RP system at the National Ocean Sciences AMS Facility (Woods Hole Oceanographic Institution, Massachusetts, USA), who also provided guidance in this thesis. As part of the study, a visit to USF was undertaken, with sediment samples from Crystal Sound, Antarctic Peninsula being processed in the USF RP system. CO2 collected from RP processing was radiocarbon dated at RRL. The scope of this thesis was to develop and build the RRL RP system, and numerous tests were conducted during this process and are presented in this thesis. As part of this, sediment samples from Crystal Sound were also processed on the RRL RP system, and an interlaboratory comparison was conducted on the same materials processed independently through both the USF and RRL RP systems. In the development and testing of the RRL system, numerous issues were identified and a set of operating protocols developed. Due to time constraints and the scope of this thesis, interlaboratory comparisons were limited in number, but initial results show good reproducibility, and that ramped pyrolysis captured significantly younger carbon populations in both the USF and RRL RP systems than methods using bulk sediment dating alone. Within uncertainties, the ages of the youngest and oldest splits from RP processing of the same material on both systems were indistinguishable.</p>


PLoS ONE ◽  
2019 ◽  
Vol 14 (2) ◽  
pp. e0212433 ◽  
Author(s):  
Kelsey L. Rogers ◽  
Samantha H. Bosman ◽  
Mary Lardie-Gaylord ◽  
Ann McNichol ◽  
Brad E. Rosenheim ◽  
...  

Radiocarbon ◽  
2018 ◽  
Vol 60 (3) ◽  
pp. 775-790 ◽  
Author(s):  
Rui Bao ◽  
Ann P McNichol ◽  
Cameron P McIntyre ◽  
Li Xu ◽  
Timothy I Eglinton

ABSTRACTOrganic carbon (OC) radiocarbon (14C) signatures in marine surface sediments are highly variable and the causes of this heterogeneity remain ambiguous. Here, we present results from a detailed 14C-based investigation of an Arabian Sea sediment, including measurements on organic matter (OM) in bulk sediment, specific grain size fractions, and OC decomposition products from ramped-pyrolysis-oxidation (RPO). Our results show that 14C ages of OM increase with increasing grain size, suggesting that grain size is an important factor controlling the 14C heterogeneity in marine sediments. Analysis of RPO decomposition products from different grain size fractions reveals an overall increase in age of corresponding thermal fractions from finer to coarser fractions. We suggest that hydrodynamic properties of sediment grains exert the important control on the 14C age distribution of OM among grain size fractions. We propose a conceptual model to account for this dimensionality in 14C variability that invokes two predominant modes of OM preservation within different grain size fractions of Arabian Sea sediment: finer (<63 µm) fractions are influenced by OM-mineral grain aggregation processes, giving rise to relatively uniform 14C ages, whereas OM preserved in coarser (>63 µm) fractions includes materials encapsulated within microfossils and/or entrained fossil (14C-depleted) OC hosted in detrital mineral grains. Our findings highlight the value of RPO for assessment of 14C age variability in sedimentary OC, and for assessing mechanisms of OM preservation in aquatic sediments.


2017 ◽  
Vol 44 (22) ◽  
pp. 11,491-11,500 ◽  
Author(s):  
Xiaowen Zhang ◽  
Thomas S. Bianchi ◽  
Xingqian Cui ◽  
Brad E. Rosenheim ◽  
Chien‐Lu Ping ◽  
...  

Radiocarbon ◽  
2017 ◽  
Vol 59 (1) ◽  
pp. 179-193 ◽  
Author(s):  
Jordon D Hemingway ◽  
Valier V Galy ◽  
Alan R Gagnon ◽  
Katherine E Grant ◽  
Sarah Z Rosengard ◽  
...  

AbstractWe estimate the blank carbon mass over the course of a typical Ramped PyrOx (RPO) analysis (150–1000°C; 5°C×min–1) to be (3.7±0.6) μg C with an Fm value of 0.555±0.042 and a δ13C value of (–29.0±0.1) ‰ VPDB. Additionally, we provide equations for RPO Fm and δ13C blank corrections, including associated error propagation. By comparing RPO mass-weighted mean and independently measured bulk δ13C values for a compilation of environmental samples and standard reference materials (SRMs), we observe a small yet consistent 13C depletion within the RPO instrument (mean–bulk: μ=–0.8‰; ±1σ=0.9‰; n=66). In contrast, because they are fractionation-corrected by definition, mass-weighted mean Fm values accurately match bulk measurements (mean–bulk: μ=0.005; ±1σ=0.014; n=36). Lastly, we show there exists no significant intra-sample δ13C variability across carbonate SRM peaks, indicating minimal mass-dependent kinetic isotope fractionation during RPO analysis. These data are best explained by a difference in activation energy between 13C- and 12C-containing compounds (13–12∆E) of 0.3–1.8 J×mol–1, indicating that blank and mass-balance corrected RPO δ13C values accurately retain carbon source isotope signals to within 1–2‰.


Sign in / Sign up

Export Citation Format

Share Document