parvocalanus crassirostris
Recently Published Documents


TOTAL DOCUMENTS

29
(FIVE YEARS 8)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Vol 8 ◽  
Author(s):  
Xiao Ma ◽  
Charles A. Jacoby ◽  
Kevin B. Johnson

Harmful algal blooms (HABs) are increasing in frequency and severity, underscoring the importance of understanding potential top-down controls of blooms. In the Indian River Lagoon (IRL), a shallow subtropical estuary, one harmful bloom was co-dominated by an unresolved prochlorophyte in the Family Prochlorothricaceae, which reached densities of > 106 cells ml–1 engendering the term “Superbloom.” Experiments were conducted to evaluate grazing rates and the potential for top-down control by an abundant herbivorous copepod, Parvocalanus crassirostris, on the prochlorophyte. Those grazing rates were lower than the rates on a palatable alternative algal food, Isochrysis galbana, when both algal species were presented in monocultures with identical densities. Grazing on the prochlorophyte decreased or ceased at densities over 4.8 × 105 cells ml–1. When the prochlorophyte and the palatable alternative each comprised half of the total density, both species were consumed, but grazing on I. galbana was reduced compared to the grazing rates in a monoculture of this species, especially at higher cell densities. Copepod mortality was observed in treatments with high concentrations of the prochlorophyte, and these treatments contained mucilage. Experiments simulating viscosities produced by prochlorophyte mucilage yielded results consistent with the original grazing experiments (i.e., copepods showed lower grazing rates and higher mortality rates in higher viscosity treatments). Results reveal potential limitations of top-down controls by this grazer on prochlorophyte blooms and HABs that produce mucilage.


Aquaculture ◽  
2021 ◽  
pp. 737347
Author(s):  
Gustavo A. Torres ◽  
German E. Merino ◽  
Martha J. Prieto ◽  
Jhon E. Acosta Portillo ◽  
Jaglin E. Lopez ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Xiao Ma ◽  
Charles A. Jacoby ◽  
Kevin B. Johnson

Harmful blooms of nanophytoplankton (2–20 μm) are increasingly common and sometimes severe, but requirements and controls of such blooms (e.g., water quality constraints, requirements for nutrients, and the presence of different guilds of grazers) are poorly understood. Laboratory grazing experiments were conducted to evaluate the potential for top-down control by the copepod Parvocalanus crassirostris on a small harmful algal species (an unidentified chlorophyte Picochlorum, 1–4 μm) and to test the effects of cell sizes on grazing rates. The Picochlorum sp. is a strain isolated from a long-lasting harmful algal bloom in the Indian River Lagoon that reached high densities (>1 × 106 cells ml–1). Experiments contrasted grazing on Picochlorum sp. with grazing on the palatable prymnesiophyte Isochrysis galbana (4–6 μm) in monocultures and mixed cultures. When presented in monocultures, grazing rates on Picochlorum sp. were lower than grazing rates on the palatable alternative. When Picochlorum sp. were presented alongside I. galbana, copepods essentially ceased feeding on the former. In additional experiments, P. crassirostris were fed plastic beads with diameters of 2.0–17.9 μm to control for differences in taste, toxicity, production of mucilage and shape of potential food. Paracalanus crassirostris fed most efficiently on beads with diameters of 7.0–7.9 μm. Results revealed that P. crassirostris can consume Picochlorum sp., but small size and the presence of palatable cells reduces the likelihood of top-down control of blooms of Picochlorum sp.


2021 ◽  
Vol 9 ◽  
Author(s):  
Johan Ismail ◽  
Abu Hena Mustafa Kamal ◽  
Mohd Hanafi Idris ◽  
S. M. Nurul Amin ◽  
Hadi Hamli ◽  
...  

Seagrass habitats are considered to be some of the most biodiverse ecosystems on the planet and safeguard some ecologically and economically important fauna, amongst which are some globally threatened species, including dugong. Malaysian seagrass ecosystems are not widespread, but their existence supports some significant marine fauna. A rigorous zooplankton study was conducted from May 2016 to February 2017, in the seagrass habitat of Lawas, Sarawak, Malaysia, to examine their temporal composition and diversity, together with their ecological influences. A total of 45 zooplankton species from 13 significant groups were recorded in the seagrass habitat. The population density of zooplankton ranged between 2,482 ind/m³ and 22,670 ind/m³ over three different seasons. A single zooplankton copepod was found to be dominant (47.40%), while bivalves were the second largest (31.8%) group in terms of total abundance. It was also noticed that the average relative abundance (0.62) and important species index (62.08) of copepods were higher than for other groups that exist in the seagrass meadow, whereas copepod Parvocalanus crassirostris showed both the highest average relative abundance (0.41) and the highest important species index (41.15). The diversity (H') and richness index of the intermediate season were found to be highest due to favourable physico-chemical conditions. Within the referred seasonal cluster, the wet and dry seasons were almost similar in terms of species abundance, while the intermediate season was distinct, with high species diversity backed by ANOSIM analysis results. Copepod and bivalves formed one group with a common similarity level of 0.80. The CCA (Canonical Correspondence Analysis) model established that abiotic factors, especially turbidity, NO2, rainfall, dissolved oxygen and pH were significantly correlated with abundance of individual groups of zooplankton. Zooplankton assemblage and abundance in Lawas were found to be very rich in multiple seasons, indicating that the productivity of uninterrupted seagrass habitat might be high and the system rich in biodiversity.


2021 ◽  
Vol 9 ◽  
Author(s):  
Pei-Wen Lee ◽  
Shih-Hui Hsiao ◽  
Chi Chou ◽  
Li-Chun Tseng ◽  
Jiang-Shiou Hwang

The Danshuei River has a third largest catchment area and third longest in Taiwan. It flows through the capital, Taipei, and more than six million people live within its catchment area. Its estuary is characterized by a highly variable chemical and physical environment that is affected by the interaction of inland freshwater runoff with wastewater, and toward the coast is also influenced by the China Coastal Current and the Kuroshio Current. By collecting zooplankton bimonthly in 2014 from the surface layer (0–2 m depth) at five sites in the estuary, we were able to demonstrate that the composition of the zooplankton, and particularly its copepod fraction, varied significantly among sampling stations and months, thereby revealing seasonal succession. Fourteen higher taxa or other categories of zooplankter were identified, with the following being most common taxa: Decapoda, Copepoda (including Calanoida, Cyclopoida, and Harpacticoida), and “other larvae.” The Copepoda comprised 44 taxa (including eight only identified to genus) belonging to 3 orders, 17 families, and 29 genera, the five most abundant of which were Bestiolina n. sp. (undescribed), Corycaeus spp., Parvocalanus crassirostris, Acartia sp., and Paracalanus parvus. The highest and lowest copepod abundances were recorded in July (2557.88 inds. m–3) and January (1.3 inds. m–3), respectively. Observed changes in abundance of many kinds of copepod appeared to be significantly related to changes in physico-chemical parameters (e.g., salinity, temperature, pH, and dissolved oxygen concentration). Cluster analysis confirmed the existence of distinct copepod communities, each characterized by a preference for a different set of environmental conditions. Our comprehensive literature review of the copepod biodiversity of Taiwan’s major rivers for comparison with similar data compiled for other estuaries in the world, the first time such a review has been compiled, shows that 32 copepod taxa have been recorded from the brackish and freshwater parts of the Danshuei River. They represent 58.2% of the total number of brackish- and freshwater copepod species in Taiwan, and five of them have so far only been recorded in the Danshuei River: the calanoids Acartiella sinensis and Pseudodiaptomus forbesi, the cyclopoids Oithona fragilis and Oithona simplex, and the harpacticoid Tachidius (Tachidius) discipes.


2019 ◽  
Vol 41 (6) ◽  
pp. 865-878 ◽  
Author(s):  
Abigail S Tyrell ◽  
Nicholas S Fisher

Abstract Because seawater temperature is correlated with viscosity, temperature changes may impact small zooplankton through a mechanical pathway, separately from any thermally-induced effects on metabolism. We evaluated both viscous and thermal effects on copepod feeding in experiments where viscosity was manipulated separately from temperature using a non-toxic polymer. Two copepod species, Acartia tonsa and Parvocalanus crassirostris, feeding on two monoalgal diets (a diatom and a dinoflagellate) were compared. At constant temperature, increase in viscosity nearly always reduced feeding; at constant viscosity, changes in temperature had no effect on feeding. The effects of viscosity and temperature were more pronounced for the diatom than the flagellate prey. Overall, reductions in zooplankton feeding at cold temperatures can be explained primarily by the mechanical effect of viscosity. Q10 values for copepod feeding (1.0–7.9), calculated from the present data and from the literature, were generally higher and more variable than Q10 values from the literature for copepod respiration (1.5–3.1) indicating that, at cold temperatures, feeding is more dramatically suppressed than metabolism. We conclude that (i) high viscosity may inhibit copepod feeding, and (ii) this viscous effect on feeding (rather than a thermal effect on metabolism) may influence the cold-temperature bounds of zooplankton populations.


Sign in / Sign up

Export Citation Format

Share Document