extrapolation algorithm
Recently Published Documents


TOTAL DOCUMENTS

78
(FIVE YEARS 16)

H-INDEX

14
(FIVE YEARS 2)

Author(s):  
Valentin Sulzer ◽  
Peyman Mohtat ◽  
Sravan Pannala ◽  
Jason Siegel ◽  
Anna Stefanopoulou

Abstract We propose algorithms to speed up physics-based battery lifetime simulations by one to two orders of magnitude compared to the state-of-the-art. First, we propose a reformulation of the Single Particle Model with side reactions to remove algebraic equations and hence reduce stiffness, with 3x speed-up in simulation time (intra-cycle reformulation). Second, we introduce an algorithm that makes use of the difference between the `fast' timescale of battery cycling and the `slow' timescale of battery degradation by adaptively selecting and simulating representative cycles, skipping other cycles, and hence requires fewer cycle simulations to simulate the entire lifetime (adaptive inter-cycle extrapolation). This algorithm is demonstrated with a specific degradation mechanism but can be applied to various models of aging phenomena. In the particular case study considered, simulations of the entire lifetime are performed in under 5 seconds. This opens the possibility for much faster and more accurate model development, testing, and comparison with experimental data.


2021 ◽  
Author(s):  
Yusi Zhang ◽  
Yong Li ◽  
Xiaojie Fang ◽  
Xuejun Sha ◽  
Yuqing Feng ◽  
...  

Abstract The increasing number of vehicles brings ubiquitous connectivity and huge information interaction, implementing with limited spectrum resource. Focusing on the higher spectral efficiency requirement, a compressive OFDM system is proposed in this paper. The idea of compressing the transmission of OFDM signal for spectral efficiency enhancement origins from GP extrapolation algorithm for bandlimited signal. In the proposed scheme, a truncation filter with deliberately designed compressed ratio and truncation mode is performed on the OFDM signal to generate the compressive OFDM signal. At the receiver, up-sampling and iterative extrapolation are conducted to recover from the partial signal. Simulation results show that the compressive OFDM signal could be compressed up to 0.5, presenting better compressive capability than the typical nonorthogonal SEFDM system. Further considering the ill-posed problem caused by the noise, a regularization approach is adopted to retain the convergence of recovery. Moreover, the proposed compressive OFDM system possesses the spectrally efficient advantage than SEFDM system. At the compressed ratio 0.5, the compressive OFDM system possesses better BER than SEFDM. At 10dB E b /N 0 , the throughput rate of the compressive OFDM is 2 times and 1.6 times higher than OFDM and SEFDM, respectively.


2021 ◽  
Author(s):  
Valentin Sulzer ◽  
Peyman Mohtat ◽  
Sravan Pannala ◽  
Jason B. Siegel ◽  
Anna G. Stefanopoulou

We propose algorithms to speed up physics-based battery lifetime simulations by one to two orders of magnitude compared to the state-of-the-art. First, we propose a reformulation of the Single Particle Model with side reactions to remove algebraic equations and hence reduce stiffness, with 3x speed-up in simulation time (intra-cycle reformulation). Second, we introduce an algorithm that makes use of the difference between the `fast' timescale of battery cycling and the `slow' timescale of battery degradation by adaptively selecting and simulating representative cycles, skipping other cycles, and hence requires fewer cycle simulations to simulate the entire lifetime (adaptive inter-cycle extrapolation). This algorithm is demonstrated with a specific degradation mechanism but can be applied to various models of aging phenomena. In the particular case study considered, simulations of the entire lifetime are performed in under 5 seconds. This opens the possibility for much faster and more accurate model development, testing, and comparison with experimental data.


Atmosphere ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1114
Author(s):  
Jiahui Zhu ◽  
Haijiang Wang ◽  
Jing Li ◽  
Zili Xu

As the aviation industry has entered a critical period of development, the demand for Automatic Dependent Surveillance Broadcast (ADS-B) technology is becoming increasingly urgent. Real-time detection of aviation wind field information and the early warning of wind field shear by atmospheric sounding system are two important factors related to the safe operation of aviation and airport. According to the advantages of ADS-B and Mode S data, this paper uses the Meteo-Particle (MP) model proposed by Sun et al., in their previous research to retrieve high-altitude wind field. Comparing the precision and accuracy of wind field retrieved results, and the optimization parameters of MP model suitable for meteorological model are further studied. To solve the problem of incomplete wind field coverage obtained by retrieval, an extrapolation algorithm of wind field is proposed. The results show that: (1) a comprehensive evaluation index is introduced, which can more effectively evaluate the comprehensive difference of wind field retrieval results in wind speed and direction. (2) The adaptability results of MP model in different periods and altitudes provide some reference for the research of other scholars. (3) The new parameter setting can improve the accuracy of the retrieved results, and the appropriate extrapolation of wind field fills in the blank part of aviation and meteorology.


2021 ◽  
Vol 3 ◽  
pp. 58-72
Author(s):  
Vladimir Semenov ◽  
◽  
Sergei Denisov ◽  
Dmitry Siryk ◽  
Oleg Kharkov ◽  
...  

One of the popular areas of modern applied nonlinear analysis is the study of variational inequalities. Many important problems of operations research and mathematical physics can be written in the form of variational inequalities. With the advent of generating adversarial neural networks, interest in algorithms for solving variational inequalities arose in the ML-community. This paper is devoted to the study of three new algorithms with Bregman projection for solving variational inequalities in Hilbert space. The first algorithm is the result of a modification of the two-stage Bregman method by low-cost adjusting the step size that without the prior knowledge of the Lipschitz constant of operator. The second algorithm, which we call the operator extrapolation algorithm, is obtained by replacing the Euclidean metric in the Malitsky–Tam method with the Bregman divergence. An attractive feature of the algorithm is only one computation at the iterative step of the Bregman projection onto the feasible set. The third algorithm is an adaptive version of the second, where the used rule for updating the step size does not require knowledge of Lipschitz constants and the calculation of operator values at additional points. For variational inequalities with pseudo-monotone, Lipschitz-continuous, and sequentially weakly continuous operators acting in a Hilbert space, convergence theorems are proved.


2021 ◽  
Vol 13 (1) ◽  
pp. 151
Author(s):  
Mingyu Kim ◽  
Jeongrae Kim

Space-based augmentation system (SBAS) provides correction information for improving the global navigation satellite system (GNSS) positioning accuracy in real-time, which includes satellite orbit/clock and ionospheric delay corrections. At SBAS service area boundaries, the correction is not fully available to GNSS users and only a partial correction is available, mostly satellite orbit/clock information. By using the geospatial correlation property of the ionosphere delay information, the ionosphere correction coverage can be extended by a spatial extrapolation algorithm. This paper proposes extending SBAS ionosphere correction coverage by using a biharmonic spline extrapolation algorithm. The wide area augmentation system (WAAS) ionosphere map is extended and its ionospheric delay error is compared with the GPS Klobuchar model. The mean ionosphere error reduction at low latitude is 52.3%. The positioning accuracy of the extended ionosphere correction method is compared with the accuracy of the conventional SBAS positioning method when only a partial set of SBAS corrections are available. The mean positioning error reduction is 44.8%, and the positioning accuracy improvement is significant at low latitude.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Sangdong Kim ◽  
Bongseok Kim ◽  
Jonghun Lee

Low-complexity-based reduced-dimension–multiple-signal classification (RD-MUSIC) is proposed with extrapolation for joint time delay of arrivals (TOA) and direction of arrivals (DOA) at automotive frequency-modulated continuous-wave (FMCW) radar systems. When a vehicle is driving on the road, the automotive FMCW radar can estimate the position of multiple other vehicles, because it can estimate multiple parameters, such as TOA and DOA. Over time, the requirement of the accuracy and resolution parameters of automotive FMCW radar is increasing. To accurately estimate the parameters of multiple vehicles, such as range and angle, it is difficult to use a low-resolution algorithm, such as the two-dimensional fast Fourier transform. To improve parameter estimation performance, high-resolution algorithms, such as the 2D-MUSIC, are required. However, the conventional high-resolution methods have a high complexity and, thus, are not applicable to a real-time radar system for a vehicle. Therefore, in this work, a low-complexity RD-MUSIC with extrapolation algorithm is proposed to have a resolution similar to that of a high-resolution algorithm to estimate the position of other vehicles. Compared with conventional low complexity high resolution, in experimental results, the proposed method had better performance.


2020 ◽  
Vol 103 (sp1) ◽  
pp. 909
Author(s):  
Xiaoyun Zhao ◽  
Xuding Song

Sign in / Sign up

Export Citation Format

Share Document