Periodontal ligament cells under mechanical force regulate local immune homeostasis by modulating Th17/Treg cell differentiation

Author(s):  
Jiayu Lin ◽  
Jiachang Huang ◽  
Zhaoqiang Zhang ◽  
Xinyi Yu ◽  
Xuepei Cai ◽  
...  
2007 ◽  
Vol 86 (10) ◽  
pp. 980-985 ◽  
Author(s):  
S. Lossdörfer ◽  
M. Sun ◽  
W. Götz ◽  
M. Dard ◽  
A. Jäger

Enamel matrix derivative (EMD) has been used successfully to aid periodontal repair. We sought to elucidate the mechanism of action of EMD and hypothesized that combined exposure to EMD and parathyroid hormone (PTH), which acts anabolicly when administered intermittently, would enhance periodontal ligament cell proliferation, differentiation, and local factor production. Confluent human periodontal ligament cells were exposed to EMD continuously or to PTH(1-34) intermittently, or a combination of both. Cell number, alkaline phosphatase activity, osteocalcin, and osteoprotegerin production were determined. Continuous challenge with EMD resulted in an increase of the differentiation parameters and osteoprotegerin production, while simultaneously inhibiting proliferation. Intermittent PTH(1-34) administration exerted opposite effects. Combined administration of EMD and PTH(1-34) weakened or even nullified the effects seen for the agents alone. These results suggest that EMD promotes periodontal ligament cell differentiation and osteoprotegerin production, potentially resulting in a microenvironment supporting periodontal repair, whereas combining EMD and PTH(1-34) failed to prove beneficial in this respect.


2014 ◽  
Vol 93 (11) ◽  
pp. 1163-1169 ◽  
Author(s):  
H. Cao ◽  
X. Kou ◽  
R. Yang ◽  
D. Liu ◽  
X. Wang ◽  
...  

The sympathetic nervous system (SNS) regulates bone resorption through β-2 adrenergic receptor (Adrb2). In orthodontic tooth movement (OTM), mechanical force induces and regulates alveolar bone remodeling. Compressive force-associated osteoclast differentiation and alveolar bone resorption are the rate-limiting steps of tooth movement. However, whether mechanical force can activate Adrb2 and thus contribute to OTM remains unknown. In this study, orthodontic nickel-titanium springs were applied to the upper first molars of rats and Adrb1/2-/- mice to confirm the role of SNS and Adrb2 in OTM. The results showed that blockage of SNS activity in the jawbones of rats by means of superior cervical ganglion ectomy reduced OTM distance from 860 to 540 μm after 14 d of force application. In addition, the injection of nonselective Adrb2 agonist isoproterenol activated the downstream signaling of SNS to accelerate OTM from 300 to 540 μm after 7 d of force application. Adrb1/2-/- mice showed significantly reduced OTM distance (19.5 μm) compared with the wild-type mice (107.6 μm) after 7 d of force application. Histopathologic analysis showed that the number of Adrb2-positive cells increased in the compressive region of periodontal ligament after orthodontic force was applied on rats. Mechanistically, mechanical compressive force upregulated Adrb2 expression in primary-cultured human periodontal ligament cells (PDLCs) through the elevation of intracellular Ca2+ concentration. Activation of Adrb2 in PDLCs increased the RANKL/OPG ratio and promoted the peripheral blood mononuclear cell differentiation to osteoclasts in the cocultured system. Upregulation of Adrb2 in PDLCs promoted osteoclastogenesis, which accelerated OTM through Adrb2-enhanced bone resorption. In summary, this study suggests that mechanical force-induced Adrb2 activation in PDLCs contributes to SNS-regulated OTM.


Sign in / Sign up

Export Citation Format

Share Document