marker transferability
Recently Published Documents


TOTAL DOCUMENTS

7
(FIVE YEARS 3)

H-INDEX

5
(FIVE YEARS 1)

2022 ◽  
Vol 15 (1) ◽  
Author(s):  
Emmanuelle Revardel ◽  
Olivier Lepais

Abstract Objective Angelica heterocarpa (Apiaceae) is a wild endemic French species with special conservation interest in the European Union. It belongs to Angelica complex genus which is widespread throughout the north temperate zone, and is sympatric with other congeneric species. The objective of this work is to develop and characterize microsatellite markers as a new tool for understanding the ecology and evolution of Angelica species complex. Results We identified simple sequence repeat (SSR) regions in a microsatellite‐enriched library from A. heterocarpa and A. sylvestris. All 16 selected SSR regions were found to amplify in these species and were highly polymorphic. Marker transferability was validated in A. razulii and A. archangelica. These markers will help us to better understand the evolutionary dynamic between rare endemics and widespread sister species, and be useful for conservation of the endemic species. Moreover, they can provide new tools for studying the numerous traditional medicinal herbs of the Angelica genus.


2020 ◽  
Author(s):  
Yanyan Wu ◽  
Qinglan Tian ◽  
Weihua Huang ◽  
Jieyun Liu ◽  
Xiuzhong Xia ◽  
...  

AbstractInformation of the Passiflora genome is still very limited. Understand the evolutionary relationship between different species of Passiflora, and develop a large number of SSR markers to provide a basis for the genetic improvement of Passiflora. Applying restriction site associated DNA sequencing (RAD-Seq) technology, we studied the phylogeny, simple sequence repeat (SSR) and marker transferability of 10 accessions of 6 species of Passiflora. Taking the partial assembly sequence of accessions P4 as the reference genome, we constructed the phylogenetic tree using the detected 46,451 high-quality single nucleotide polymorphisms (SNPs), showing that P6, P7, P8 and P9 were a single one while P5 and P10 were clustered together, and P1, P2, P3 and P4 were closer in genetic relationship. Using P8 as the reference genome, a total of 12,452 high-quality SNPs were used to construct phylogenetic tree. P3, P4, P7, P8, P9 and P10 were all single branch while P1 and P2 were clustered together, and P5 and P6 were clustered into one branch. A principal component analysis (PCA) revealed a similar population structure, which four cultivated passion fruits forming a tight cluster. A total of 2,614 SSRs were identified in the genome of 10 Passiflora accessions. The core motifs were AT, GA, AAG etc., 2-6 bases, 4-16 repeats, and 2,515 pairs of SSR primer were successfully developed. Tthe SSR transferability in cultivated passion fruits is the best. These results will contribute to the study of genomics and molecular genetics in passion fruit.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Cheng Zou ◽  
Avinash Karn ◽  
Bruce Reisch ◽  
Allen Nguyen ◽  
Yongming Sun ◽  
...  

2010 ◽  
Vol 6 (5) ◽  
pp. 689-700 ◽  
Author(s):  
Mourad Mnejja ◽  
Jordi Garcia-Mas ◽  
Jean-Marc Audergon ◽  
Pere Arús

2006 ◽  
Vol 131 (4) ◽  
pp. 506-512 ◽  
Author(s):  
Thomas M. Davis ◽  
Laura M. DiMeglio ◽  
Ronghui Yang ◽  
Sarah M.N. Styan ◽  
Kim S. Lewers

The cultivated strawberry, Fragaria ×ananassa Duchesne ex Rozier, originated via hybridization between octoploids F. chiloensis (L.) Mill. and F. virginiana Mill. These three octoploid species are thought to share a putative genome composition of AAA`A'BBB`B'. Diploid F. vesca L., is considered to have donated the A genome. Current attention to the development of a diploid model system for strawberry genomics warrants the assessment of simple sequence repeat (SSR) marker transferability between the octoploid and diploid species in Fragaria L. In the present study, 23 SSR primer pairs derived from F. ×ananassa `Earliglow' by genomic library screening were evaluated for their utility in six diploid Fragaria species, including eight representatives of F. vesca, four of F. viridis Weston, and one each of F. nubicola (Hook. f.) Lindl. ex Lacaita, F. mandshurica Staudt, F. iinumae Makino, and F. nilgerrensis Schltdl. ex J. Gay. SSR primer pair functionality, as measured by amplification success rate (= 100% - failure rate) in each species, was ranked (from highest to lowest) as follows: F. vesca (98.4%) > F. iinumae (93.8%) = F. nubicola (93.8%) > F. mandshurica (87.5%) > F. nilgerrensis (75%) > F. viridis (73.4%). The extent to which these octoploid-derived SSR primer pairs generated markers that could be added to the F. vesca linkage map also was assessed. Of the 13 F. ×ananassa SSR markers that segregated codominantly in the F. vesca mapping population, 11 were assigned to linkage groups based upon close linkages to previously mapped loci. These markers were distributed over six of the seven F. vesca linkage groups, and can serve as anchor loci defining these six groups for purposes of comparative mapping between F. vesca and F. ×ananassa.


Sign in / Sign up

Export Citation Format

Share Document