global oscillation network group
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 7)

H-INDEX

10
(FIVE YEARS 2)

2022 ◽  
Vol 924 (1) ◽  
pp. L20
Author(s):  
Kiran Jain ◽  
Niket Jain ◽  
Sushanta C. Tripathy ◽  
Mausumi Dikpati

Abstract The Sun’s magnetic field varies on multiple timescales. Observations show that the minimum between cycles 24 and 25 was the second consecutive minimum that was deeper and wider than several earlier minima. Since the active regions observed at the Sun’s surface are manifestations of the magnetic field generated in the interior, it is crucial to investigate/understand the dynamics below the surface. In this context, we report by probing the solar interior with helioseismic techniques applied to long-term oscillations data from the Global Oscillation Network Group, that the seismic minima in deeper layers have been occurring about a year earlier than that at the surface for the last two consecutive solar cycles. Our findings also demonstrate a decrease in strong magnetic fields at the base of the convection zone, the primary driver of the surface magnetic activity. We conclude that the magnetic fields located in the core and near-surface shear layers, in addition to the tachocline fields, play an important role in modifying the oscillation frequencies. This further strengthens the existence of a relic magnetic field in the Sun’s core.


2021 ◽  
Author(s):  
Andres Munoz-Jaramillo ◽  
Anna Jungbluth ◽  
Xavier Gitiaux ◽  
Paul Wright ◽  
Carl Shneider ◽  
...  

Abstract Super-resolution techniques aim to increase the resolution of images by adding detail. Compared to upsampling techniques reliant on interpolation, deep learning-based approaches learn features and their relationships across the training data set to leverage prior knowledge on what low resolution patterns look like in higher resolution images. As an added benefit, deep neural networks can learn the systematic properties of the target images (i.e.\ texture), combining super-resolution with instrument cross-calibration. While the successful use of super-resolution algorithms for natural images is rooted in creating perceptually convincing results, super-resolution applied to scientific data requires careful quantitative evaluation of performances. In this work, we demonstrate that deep learning can increase the resolution and calibrate space- and ground-based imagers belonging to different instrumental generations. In addition, we establish a set of measurements to benchmark the performance of scientific applications of deep learning-based super-resolution and calibration. We super-resolve and calibrate solar magnetic field images taken by the Michelson Doppler Imager (MDI; resolution ~2"/pixel; science-grade, space-based) and the Global Oscillation Network Group (GONG; resolution ~2.5"/pixel; space weather operations, ground-based) to the pixel resolution of images taken by the Helioseismic and Magnetic Imager (HMI; resolution ~0.5"/pixel; last generation, science-grade, space-based).


2020 ◽  
Vol 500 (3) ◽  
pp. 3095-3110
Author(s):  
René Kiefer ◽  
Anne-Marie Broomhall

ABSTRACT It has been shown over and over again that the parameters of solar p modes vary through the solar activity cycle: frequencies, amplitudes, lifetimes, energies. However, so far, the rates at which energy is supplied to the p modes have not been detected to be sensitive to the level of magnetic activity. We set out to re-inspect their temporal behaviour over the course of the last two Schwabe cycles. For this, we use Global Oscillation Network Group (GONG) p-mode parameter tables. We analyse the energy supply rates for modes of harmonic degrees l = 0–150 and average over the azimuthal orders and, subsequently, over modes in different parameter ranges. This averaging greatly helps in reducing the noise in the data. We find that energy supply rates are anticorrelated with the level of solar activity, for which we use the F10.7 index as a proxy. Modes of different mode frequency and harmonic degrees show varying strengths of anticorrelation with the F10.7 index, reaching as low as r = −0.82 for low frequency modes with l = 101–150. In this first dedicated study of solar p-mode energy supply rates in GONG data, we find that they do indeed vary through the solar cycle. Earlier investigations with data from other instruments were hindered by being limited to low harmonic degrees or by the data sets being too short. We provide tables of time-averaged energy supply rates for individual modes as well as for averages over disjunct frequency bins.


2020 ◽  
Vol 635 ◽  
pp. A109 ◽  
Author(s):  
Chris S. Hanson ◽  
Laurent Gizon ◽  
Zhi-Chao Liang

Context. Solar Rossby waves have only recently been unambiguously identified in Helioseimsic and Magnetic Imager (HMI) and Michelson Doppler Imager maps of flows near the solar surface. So far this has not been done with the Global Oscillation Network Group (GONG) ground-based observations, which have different noise properties. Aims. We use 17 years of GONG++ data to identify and characterize solar Rossby waves using ring-diagram helioseismology. We compare directly with HMI ring-diagram analysis. Methods. Maps of the radial vorticity were obtained for flows within the top 2 Mm of the surface for 17 years of GONG++ data. The data were corrected for systematic effects including the annual periodicity related to the B0 angle. We then computed the Fourier components of the radial vorticity of the flows in the co-rotating frame. We performed the same analysis on the HMI data that overlap in time. Results. We find that the solar Rossby waves have measurable amplitudes in the GONG++ sectoral power spectra for azimuthal orders between m = 3 and m = 15. The measured mode characteristics (frequencies, lifetimes, and amplitudes) from GONG++ are consistent with the HMI measurements in the overlap period from 2010 to 2018 for m ≤ 9. For higher-m modes the amplitudes and frequencies agree within two sigmas. The signal-to-noise ratio of modes in GONG++ power spectra is comparable to those of HMI for 8 ≤ m ≤ 11, but is lower by a factor of two for other modes. Conclusions. The GONG++ data provide a long and uniform data set that can be used to study solar global-scale Rossby waves from 2001.


2020 ◽  
Vol 635 ◽  
pp. A132 ◽  
Author(s):  
Q. M. Zhang ◽  
J. H. Guo ◽  
K. V. Tam ◽  
A. A. Xu

Context. Large-amplitude, longitudinal filament oscillations triggered by solar flares have been well established in the literature. However, filament oscillations enhanced by flares have never been reported. Aims. In this paper we report the multiwavelength observations of a very long filament in active region (AR) 11112 on 2010 October 18. The filament was composed of two parts, the eastern part (EP) and the western part (WP). We focus on longitudinal oscillations of the EP, which were enhanced by two homologous C-class flares in the same AR. Methods. The filament was observed in Hα wavelength by the Global Oscillation Network Group and in extreme ultraviolet wavelengths by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory (SDO). Line-of-sight magnetograms were provided by the Helioseismic and Magnetic Imager on board SDO. The global three-dimensional magnetic fields were obtained using the potential field source surface modeling. Soft X-ray light curves of the two flares were recorded by the GOES spacecraft. White light images of the corona were observed by the LASCO/C2 coronagraph on board SOHO. To reproduce part of the observations, we perform one-dimensional, hydrodynamic numerical simulations using the MPI-AMRVAC code. Results. The C1.3 flare was confined without a coronal mass ejection (CME). Both EP and WP of the filament were slightly disturbed and survived the flare. After 5 h, eruption of the WP generated a C2.6 flare and a narrow jet-like CME. Three oscillating threads (thda, thdb, thdc) are obviously identified in the EP, and their oscillations are naturally divided into three phases by the two flares. The initial amplitude ranges from 1.6 to 30 Mm with a mean value of ∼14 Mm. The period ranges from 34 to 73 min with a mean value of ∼53 min. The curvature radii of the magnetic dips are estimated to be 29 to 133 Mm with a mean value of ∼74 Mm. The damping times ranges from ∼62 to ∼96 min with a mean value of ∼82 min. The value of τ/P is between 1.2 and 1.8. For thda in the EP, the amplitudes were enhanced by the two flares from 6.1 Mm to 6.8 Mm after the C1.3 flare, and further to 21.4 Mm after the C2.6 flare. The period variation as a result of perturbation from the flares was within 20%. The attenuation became faster after the C2.6 flare. Conclusions. To the best of our knowledge, this is the first report of large-amplitude, longitudinal filament oscillations enhanced by flares. Numerical simulations reproduce the oscillations of thda very well. The simulated amplitudes and periods are close to the observed values, while the damping time in the last phase is longer, implying additional mechanisms should be taken into account apart from radiative loss.


2020 ◽  
Vol 493 (1) ◽  
pp. L49-L53
Author(s):  
Rachel Howe ◽  
William J Chaplin ◽  
Sarbani Basu ◽  
Warrick H Ball ◽  
Guy R Davies ◽  
...  

ABSTRACT The frequency, νmax, at which the envelope of pulsation power peaks for solar-like oscillators is an important quantity in asteroseismology. We measure νmax for the Sun using 25 yr of Sun-as-a-star Doppler velocity observations with the Birmingham Solar-Oscillations Network (BiSON), by fitting a simple model to binned power spectra of the data. We also apply the fit to Sun-as-a-star Doppler velocity data from Global Oscillation Network Group and Global Oscillations at Low Frequency, and photometry data from VIRGO/SPM on the ESA/NASA SOHO spacecraft. We discover a weak but nevertheless significant positive correlation of the solar νmax with solar activity. The uncovered shift between low and high activity, of $\simeq 25\, \rm \mu Hz$, translates to an uncertainty of 0.8 per cent in radius and 2.4 per cent in mass, based on direct use of asteroseismic scaling relations calibrated to the Sun. The mean νmax in the different data sets is also clearly offset in frequency. Our results flag the need for caution when using νmax in asteroseismology.


2018 ◽  
Vol 618 ◽  
pp. A43 ◽  
Author(s):  
T. Roudier ◽  
B. Schmieder ◽  
B. Filippov ◽  
R. Chandra ◽  
J. M. Malherbe

Context. A large filament composed principally of two sections erupted sequentially in the southern hemisphere on January 26, 2016. The central, thick part of the northern section was first lifted up and lead to the eruption of the full filament. This event was observed in Hα with the Global Oscillation Network Group (GONG) and Christian Latouche IMageur Solaire (CLIMSO), and in ultraviolet (UV) with the Atmospheric Imaging Assembly (AIA) imager on board the Solar Dynamic Observatory (SDO). Aims. The aim of the paper is to relate the photospheric motions below the filament and its environment to the eruption of the filament. Methods. An analysis of the photospheric motions using Solar Dynamic Observatory Helioseismic and Magnetic Imager (SDO/HMI) continuum images with the new version of the coherent structure tracking (CST) algorithm developed to track granules, as well as large-scale photospheric flows, has been performed. Following velocity vectors, corks migrate towards converging areas. Results. The supergranule pattern is clearly visible outside the filament channel but difficult to detect inside because the modulus of the vector velocity is reduced in the filament channel, mainly in the magnetized areas. The horizontal photospheric flows are strong on the west side of the filament channel and oriented towards the filament. The ends of the filament sections are found in areas of concentration of corks. Whirled flows are found locally around the feet. Conclusions. The strong horizontal flows with an opposite direction to the differential rotation create strong shear and convergence along the magnetic polarity inversion line (PIL) in the filament channel. The filament has been destabilized by the converging flows, which initiate an ascent of the middle section of the filament until the filament reaches the critical height of the torus instability inducing, consequently, the eruption. The n decay index indicated an altitude of 60 Mm for the critical height. It is conjectured that the convergence along the PIL is due to the large-scale size cells of convection that transport the magnetic field to their borders.


2018 ◽  
Vol 13 (S340) ◽  
pp. 11-12
Author(s):  
B Lekshmi ◽  
Dibyendu Nandy ◽  
H M Antia

AbstractSolar torsional oscillations are migrating bands of slower and faster than average rotation, which are thought to be related to the Sun’s magnetic cycle. We perform the first long-term study (16 years) of hemispherical asymmetry in solar torsional oscillation velocity using helioseismic data. We explore the spatial and temporal variation of North-South asymmetry using zonal flow velocities obtained from ring diagram analysis of the Global Oscillation Network Group (GONG) Doppler images. We find a strong correlation between the asymmetries of near-surface torsional oscillation with magnetic flux and sunspot number, with the velocity asymmetry preceding in both the cases. We speculate that the asymmetry in torsional oscillation velocity may help in predicting the hemispherical asymmetry in the sunspot cycle.


Sign in / Sign up

Export Citation Format

Share Document