polarity inversion line
Recently Published Documents


TOTAL DOCUMENTS

39
(FIVE YEARS 20)

H-INDEX

6
(FIVE YEARS 3)

2022 ◽  
Vol 924 (1) ◽  
pp. 17
Author(s):  
D. Baker ◽  
L. M. Green ◽  
D. H. Brooks ◽  
P. Démoulin ◽  
L. van Driel-Gesztelyi ◽  
...  

Abstract Magnetic flux ropes are bundles of twisted magnetic field enveloping a central axis. They harbor free magnetic energy and can be progenitors of coronal mass ejections (CMEs). However, identifying flux ropes on the Sun can be challenging. One of the key coronal observables that has been shown to indicate the presence of a flux rope is a peculiar bright coronal structure called a sigmoid. In this work, we show Hinode EUV Imaging Spectrometer observations of sigmoidal active region (AR) 10977. We analyze the coronal plasma composition in the AR and its evolution as a sigmoid (flux rope) forms and erupts as a CME. Plasma with photospheric composition was observed in coronal loops close to the main polarity inversion line during episodes of significant flux cancellation, suggestive of the injection of photospheric plasma into these loops driven by photospheric flux cancellation. Concurrently, the increasingly sheared core field contained plasma with coronal composition. As flux cancellation decreased and a sigmoid/flux rope formed, the plasma evolved to an intermediate composition in between photospheric and typical AR coronal compositions. Finally, the flux rope contained predominantly photospheric plasma during and after a failed eruption preceding the CME. Hence, plasma composition observations of AR 10977 strongly support models of flux rope formation by photospheric flux cancellation forcing magnetic reconnection first at the photospheric level then at the coronal level.


Author(s):  
A. A. Norton ◽  
R. B. Stutz ◽  
B. T. Welsch

Using data from the Helioseismic Magnetic Imager, we report on the amplitudes and phase relations of oscillations in quiet-Sun, plage, umbra and the polarity inversion line (PIL) of an active region NOAA#11158. We employ Fourier, wavelet and cross-correlation spectra analysis. Waves with 5 min periods are observed in umbra, PIL and plage with common phase values of ϕ ( v , I ) =  π /2, ϕ ( v , B los ) = −( π /2). In addition, ϕ ( I , B los ) =  π in plage are observed. These phase values are consistent with slow standing or fast standing surface sausage wave modes. The line width variations, and their phase relations with intensity and magnetic oscillations, show different values within the plage and PIL regions, which may offer a way to further differentiate wave mode mechanics. Significant Doppler velocity oscillations are present along the PIL, meaning that plasma motion is perpendicular to the magnetic field lines, a signature of Alvènic waves. A time–distance diagram along a section of the PIL shows Eastward propagating Doppler oscillations converting into magnetic oscillations; the propagation speeds range between 2 and 6 km s −1 . Lastly, a 3 min wave is observed in select regions of the umbra in the magnetogram data. This article is part of the Theo Murphy meeting issue ‘High-resolution wave dynamics in the lower solar atmosphere’.


2020 ◽  
Vol 642 ◽  
pp. A169
Author(s):  
Reetika Joshi ◽  
Brigitte Schmieder ◽  
Guillaume Aulanier ◽  
Véronique Bommier ◽  
Ramesh Chandra

Context. Jets often have a helical structure containing ejected plasma that is both hot and also cooler and denser than the corona. Various mechanisms have been proposed to explain how jets are triggered, primarily attributed to a magnetic reconnection between the emergence of magnetic flux and environment or that of twisted photospheric motions that bring the system into a state of instability. Aims. Multi-wavelength observations of a twisted jet observed with the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory and the Interface Region Imaging Spectrograph (IRIS) were used to understand how the twist was injected into the jet, thanks to the IRIS spectrographic slit fortuitously crossing the reconnection site at that time. Methods. We followed the magnetic history of the active region based on the analysis of the Helioseismic and Magnetic Imager vector magnetic field computed with the UNNOFIT code. The nature and dynamics of the jet reconnection site are characterised by the IRIS spectra. Results. This region is the result of the collapse of two emerging magnetic fluxes (EMFs) overlaid by arch filament systems that have been well-observed with AIA, IRIS, and the New Vacuum Solar Telescope in Hα. In the magnetic field maps, we found evidence of the pattern of a long sigmoidal flux rope (FR) along the polarity inversion line between the two EMFs, which is the site of the reconnection. Before the jet, an extension of the FR was present and a part of it was detached and formed a small bipole with a bald patch (BP) region, which dynamically became an X-current sheet over the dome of one EMF where the reconnection took place. At the time of the reconnection, the Mg II spectra exhibited a strong extension of the blue wing that is decreasing over a distance of 10 Mm (from −300 km s−1 to a few km s−1). This is the signature of the transfer of the twist to the jet. Conclusions. A comparison with numerical magnetohydrodynamics simulations confirms the existence of the long FR. We conjecture that there is a transfer of twist to the jet during the extension of the FR to the reconnection site without FR eruption. The reconnection would start in the low atmosphere in the BP reconnection region and extend at an X-point along the current sheet formed above.


Science ◽  
2020 ◽  
Vol 369 (6503) ◽  
pp. 587-591 ◽  
Author(s):  
Kanya Kusano ◽  
Tomoya Iju ◽  
Yumi Bamba ◽  
Satoshi Inoue

Solar flares are highly energetic events in the Sun’s corona that affect Earth’s space weather. The mechanism that drives the onset of solar flares is unknown, hampering efforts to forecast them, which mostly rely on empirical methods. We present the κ-scheme, a physics-based model to predict large solar flares through a critical condition of magnetohydrodynamic instability, triggered by magnetic reconnection. Analysis of the largest (X-class) flares from 2008 to 2019 (during solar cycle 24) shows that the κ-scheme predicts most imminent large solar flares, with a small number of exceptions for confined flares. We conclude that magnetic twist flux density, close to a magnetic polarity inversion line on the solar surface, determines when and where solar flares may occur and how large they can be.


2020 ◽  
Vol 637 ◽  
pp. A77
Author(s):  
D.-C. Talpeanu ◽  
E. Chané ◽  
S. Poedts ◽  
E. D’Huys ◽  
M. Mierla ◽  
...  

Context. It is widely accepted that photospheric shearing motions play an important role in triggering the initiation of coronal mass ejections (CMEs). Even so, there are events for which the source signatures are difficult to locate, while the CMEs can be clearly observed in coronagraph data. These events are therefore called ‘stealth’ CMEs. They are of particular interest to space weather forecasters, since eruptions are usually discarded from arrival predictions if they appear to be backsided, which means not presenting any clear low-coronal signatures on the visible solar disc. Such assumptions are not valid for stealth CMEs since they can originate from the front side of the Sun and be Earth-directed, but they remain undetected and can therefore trigger unpredicted geomagnetic storms. Aims. We numerically model and investigate the effects of shearing motion variations onto the resulting eruptions and we focus in particular on obtaining a stealth CME in the trailing current sheet of a previous ejection. Methods. We used the 2.5D magnetohydrodynamics package of the code MPI-AMRVAC to numerically simulate consecutive CMEs by imposing shearing motions onto the inner boundary, which represents, in our case, the low corona. The initial magnetic configuration consists of a triple arcade structure embedded into a bimodal solar wind, and the sheared polarity inversion line is found in the southern loop system. The mesh was continuously adapted through a refinement method that applies to current carrying structures, allowing us to easily track the CMEs in high resolution, without resolving the grid in the entire domain. We also compared the obtained eruptions with the observed directions of propagation, determined using a forward modelling reconstruction technique based on a graduated cylindrical shell geometry, of an initial multiple coronal mass ejection (MCME) event that occurred in September 2009. We further analysed the simulated ejections by tracking the centre of their flux ropes in latitude and their total speed. Radial Poynting flux computation was employed as well to follow the evolution of electromagnetic energy introduced into the system. Results. Changes within 1% in the shearing speed result in three different scenarios for the second CME, although the preceding eruption seems insusceptible to such small variations. Depending on the applied shearing speed, we thus obtain a failed eruption, a stealth, or a CME driven by the imposed shear, as the second ejection. The dynamics of all eruptions are compared with the observed directions of propagation of an MCME event and a good correlation is achieved. The Poynting flux analysis reveals the temporal variation of the important steps of eruptions. Conclusions. For the first time, a stealth CME is simulated in the aftermath of a first eruption, originating from an asymmetric streamer configuration, through changes in the applied shearing speed, indicating it is not necessary for a closed streamer to exist high in the corona for such an event to occur. We also emphasise the high sensitivity of the corona to small changes in motions at the photosphere, or in our simulations, at the low corona.


2020 ◽  
Vol 634 ◽  
pp. A131
Author(s):  
A. J. Kaithakkal ◽  
J. M. Borrero ◽  
C. E. Fischer ◽  
C. Dominguez-Tagle ◽  
M. Collados

A quiet Sun magnetic flux cancellation event at the disk center was recorded using the Integral Field Unit (IFU) mounted on the GREGOR Infrared Spectrograph (GRIS). The GRIS instrument sampled the event in the photospheric Si I 10827 Å spectral line. The cancellation was preceded by a significant rise in line core intensity and excitation temperature, which is inferred from Stokes inversions under local thermodynamic equilibrium (LTE). The opposite polarity features seem to undergo reconnection above the photosphere. We also found that the border pixels neighboring the polarity inversion line of one of the polarities exhibit a systematic variation of area asymmetry. Area asymmetry peaks right after the line core intensity enhancement and gradually declines thereafter. Analyzing Stokes profiles recorded from either side of the polarity inversion line could therefore potentially provide additional information on the reconnection process related to magnetic flux cancellation. Further analysis without assuming LTE will be required to fully characterize this event.


Sign in / Sign up

Export Citation Format

Share Document