column collapse
Recently Published Documents


TOTAL DOCUMENTS

73
(FIVE YEARS 24)

H-INDEX

18
(FIVE YEARS 2)

2021 ◽  
Vol 2068 (1) ◽  
pp. 012009
Author(s):  
Zhiqiang Lai ◽  
Li Pan ◽  
Zhongmei Wang ◽  
Jiayi Wang ◽  
Yanfen Ren

Abstract This study conducts numerical simulations of the granular column collapse with Fractal Particle Size Distributions (FPSDs) via the Discrete Element Method (DEM) and investigated kinetic behaviours of dry granular flows. The aim of this paper is to explore the effects of the fractal dimension of FPSD on the kinetics of dry granular flows. When the fractal dimension of the flows consisting of granular materials increases, the horizontal particle translational velocities become greater and the mobility improves, whereas the particle rotational velocities decrease. Meanwhile, the change in the potential energy increases, and the particle kinetic energy in the rotational form reduces; thus, the particle kinetic energy in the translational form increases. The reducing particle rotational movement may be related to the reducing particle shearing behaviours because only the contact shearing can affect particle rotational motion. In conclusion, a larger fractal dimension of FPSD of a dry granular flow leads to a longer spreading distance and a smaller rotational velocity.


2021 ◽  
Author(s):  
Chengwei Zhu ◽  
Chong Peng ◽  
Wei Wu

AbstractA smoothed particle hydrodynamics code based on micropolar continua for geomaterials is developed for problems involving large deformation and shear strain localization. Two typical geotechnical problems, i.e., biaxial compression test and sand column collapse, are simulated using classical and micropolar model to demonstrate the performance of the newly proposed method. A parameter study is given on the scale effect in the micropolar continua.


2021 ◽  
Vol 9 (6) ◽  
pp. 617
Author(s):  
Chun Wang ◽  
Guanlin Ye ◽  
Xiannan Meng ◽  
Yongqi Wang ◽  
Chong Peng

A two-fluid Eulerian–Lagrangian coupled model is developed to investigate the complex interactions between solid particles and the ambient water during the process of submerged granular column collapse. In this model, the water phase is considered to be a Newtonian fluid, whereas the granular column is modeled as an elastic–perfectly plastic material. The water flow field is calculated by the mesh-based Eulerian Finite Volume Method (FVM), with the free surface captured by the Volume-of-Fluid (VOF) technique. The large deformation of the granular material is simulated by the mesh-free, particle-based Lagrangian Smoothed Particle Hydrodynamics method (SPH). Information transfer between Eulerian nodes and Lagrangian particles is performed by the aid of the SPH interpolation function. Both dry and submerged granular column collapses are simulated with the proposed model. Experiments of the submerged cases are also conducted for comparison. Effects of dilatancy (compaction) of initially dense (loose) packing granular columns on the mixture dynamics are investigated to reveal the mechanisms of different flow regimes. Pore water pressure field and granular velocity field are in good agreement between our numerical results and experimental observations, which demonstrates the capability of the proposed Eulerian–Lagrangian coupled method in dealing with complex submerged water–granular mixture flows.


Author(s):  
Ruixiao Zhang ◽  
Dong Su ◽  
Guoping Lei ◽  
Xiangsheng Chen

2021 ◽  
Author(s):  
Eleanor Tennant ◽  
Susanna Jenkins ◽  
Annie Winson ◽  
Christina Widiwijayanti ◽  
Hendra Gunawan ◽  
...  

<p>Understanding past eruption dynamics at a volcano is crucial for forecasting the range of possible future eruptions and their associated hazards and risk. In this work we reconstructed pyroclastic density currents and tephra fall from three eruptions at Gede volcano, Indonesia with the aim of gaining further insight into past eruptions and identifying suitable eruption source parameters for future hazard and risk assessment. Gede has the largest number of people living within 100 km of any volcano worldwide, and has exhibited recent unrest activity, yet little is known about its eruption history. For pyroclastic density currents, we used Titan2D to reconstruct geological deposits dated at 1200 and c. 1000 years BP. An objective and quantitative multi-criteria method was developed to evaluate the fit of over 300 pyroclastic density current (PDC) model simulations to field observations. We found that the 1200 years BP geological deposits could be reproduced with either a dome collapse or column collapse as the generation mechanism although a relatively low basal friction of 6 degrees would suggest that the PDCs were markedly mobile. Lower basal frictions may reflect the occurrence of previous PDCs that smoothed the path, reducing frictional resistance and enabling greater runout for the reconstructed unit. For the 1,000 years BP PDC, a column collapse mechanism and higher basal friction was required to fit the geological deposits. In agreement with previous studies, we found that Titan2D simulations were most sensitive to the basal friction; however, we also found that the internal friction – often fixed and considered of low influence on outputs - can have a moderate effect on the simulated average deposit thickness. We used Tephra2 to reconstruct historic observations of tephra dispersed to Jakarta and other towns during the last known magmatic eruption of Gede in 1948. In the absence of observable field deposits, or detailed information from the published literature, we stochastically sampled eruption source parameters from wide ranges informed by analogous volcanic systems. Our modelling suggests that the deposition of tephra in Jakarta during the November 1948 eruption was a very low probability event, with approximately a 0.03 % chance of occurrence. Through this work, we exemplify the reconstruction of past eruptions when faced with epistemic uncertainty, and improve our understanding of past eruption dynamics at Gede volcano, providing a crucial step towards the reduction of risk to nearby populations through volcanic hazard assessment.</p>


Sign in / Sign up

Export Citation Format

Share Document