base stacking
Recently Published Documents


TOTAL DOCUMENTS

255
(FIVE YEARS 26)

H-INDEX

47
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Moises Ernesto Romero ◽  
Chunhong Long ◽  
Daniel La Rocco ◽  
Anusha Mysore Keerthi ◽  
Dajun Xu ◽  
...  

Remdesivir (RDV) prodrug can be metabolized into a triphosphate form nucleotide analogue (RDV-TP) to bind and insert into the active site of viral RNA dependent RNA polymerase (RdRp) to further interfere with the viral genome replication. In this work, we computationally studied how RDV-TP binds and inserts to the SARS-CoV-2 RdRp active site, in comparison with natural nucleotide substrate adenosine triphosphate (ATP). To do that, we first constructed atomic structural models of an initial binding complex (active site open) and a substrate insertion complex (active site closed), based on high-resolution cryo-EM structures determined recently for SARS-CoV-2 RdRp or non-structural protein (nsp) 12, in complex with accessory protein factors nsp7 and nsp8. By conducting all-atom molecular dynamics simulation with umbrella sampling strategies on the nucleotide insertion between the open and closed state RdRp complexes, our studies show that RDV-TP can bind comparatively stabilized to the viral RdRp active site, as it primarily forms base stacking with the template Uracil nucleotide (at +1), which is under freely fluctuations and supports a low free energy barrier of the RDV-TP insertion (~ 1.5 kcal/mol). In comparison, the corresponding natural substrate ATP binds to the RdRp active site in Watson-Crick base pairing with the template nt, and inserts into the active site with a medium low free energy barrier (~ 2.6 kcal/mol), when the fluctuations of the template nt are well quenched. The simulations also show that the initial base stacking of RDV-TP with the template can be particularly stabilized by motif B-N691, S682, and motif F-K500 with the sugar, base, and the template backbone, respectively. Although the RDV-TP insertion can be hindered by motif-F R555/R553 interaction with the triphosphate, the ATP insertion seems to be facilitated by such interactions. The inserted RDV-TP and ATP can be further distinguished by specific sugar interaction with motif B-T687 and motif-A D623, respectively.


2021 ◽  
Author(s):  
Domenico Salerno ◽  
Francesco Mantegazza ◽  
Valeria Cassina ◽  
Matteo Cristofalo ◽  
Qing Shao ◽  
...  

ABSTRACTSingle molecule experiments have demonstrated a progressive transition from a B- to an L-form helix as DNA is gently stretched and progressively unwound. Since the particular sequence of a DNA segment influences both base stacking and hydrogen bonding, the conformational dynamics of B-to-L transitions should be tunable. To test this idea, DNA with diaminopurine replacing adenine was synthesized to produce linear fragments with triply hydrogen-bonded A:T base pairs. Triple hydrogen bonding stiffened the DNA by 30% flexurally. In addition, DAP-substituted DNA formed plectonemes with larger gyres for both B- and L-form helices. Both unmodified and DAP-substituted DNA transitioned from a B- to an L-helix under physiological conditions of mild tension and unwinding. This transition avoids writhing by DNA stretched and unwound by enzymatic activity. The intramolecular nature and ease of this transition likely prevent cumbersome topological rearrangements in genomic DNA that would require topoisomerase activity to resolve. L-DNA displayed about tenfold lower persistence length indicating it is much more contractile and prone to sharp bends and kinks. However, left-handed DAP DNA was twice as stiff as unmodified L-DNA. Thus, significantly doubly and triply hydrogen bonded segments have very distinct mechanical dynamics at physiological levels of negative supercoiling and tension.


2020 ◽  
Vol 124 (47) ◽  
pp. 10663-10672
Author(s):  
Paul D. Harris ◽  
Samir M. Hamdan ◽  
Satoshi Habuchi

2020 ◽  
Author(s):  
Eric R. Beyerle ◽  
Mohammadhasan Dinpajooh ◽  
Huiying Ji ◽  
Peter H. von Hippel ◽  
Andrew H. Marcus ◽  
...  

AbstractRegulatory protein access to the DNA duplex ‘interior’ depends on local DNA ‘breathing’ fluctuations, and the most fundamental of these are thermally-driven base stacking-unstacking interactions. The smallest DNA unit that can undergo such transitions is the dinucleotide, whose structural and dynamic properties are dominated by stacking, while the ion condensation, cooperative stacking and inter-base hydrogen-bonding, present in duplex DNA are not involved. We use dApdA to study stacking-unstacking at the dinucleotide level because the fluctuations observed are likely to resemble those of larger DNA molecules, but in the absence of constraints introduced by cooperativity are likely to be more pronounced, and thus more accessible to measurement. We study these fluctuations with a combination of Molecular Dynamics simulations on the microsecond timescale and Markov State Model analyses, and validate our results by calculations of circular dichroism (CD) spectra, with results that agree well with experiments. Our analyses show that the CD spectrum of dApdA is defined by two distinct chiral conformations that correspond, respectively, to a Watson-Crick form and a hybrid form with one base in a Hoogsteen configuration. We find also that ionic structure and water orientation around dApdA play important roles in controlling its breathing fluctuations.


Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4120
Author(s):  
Shuntaro Takahashi ◽  
Piet Herdwijn ◽  
Naoki Sugimoto

Unnatural nucleic acids are promising materials to expand genetic information beyond the natural bases. During replication, substrate nucleotide incorporation should be strictly controlled for optimal base pairing with template strand bases. Base-pairing interactions occur via hydrogen bonding and base stacking, which could be perturbed by the chemical environment. Although unnatural nucleobases and sugar moieties have undergone extensive structural improvement for intended polymerization, the chemical environmental effect on the reaction is less understood. In this study, we investigated how molecular crowding could affect native DNA polymerization along various templates comprising unnatural nucleobases and sugars. Under non-crowding conditions, the preferred incorporation efficiency of pyrimidine deoxynucleotide triphosphates (dNTPs) by the Klenow fragment (KF) was generally high with low fidelity, whereas that of purine dNTPs was the opposite. However, under crowding conditions, the efficiency remained almost unchanged with varying preferences in each case. These results suggest that hydrogen bonding and base-stacking interactions could be perturbed by crowding conditions in the bulk solution and polymerase active center during transient base pairing before polymerization. This study highlights that unintended dNTP incorporation against unnatural nucleosides could be differentiated in cases of intracellular reactions.


2020 ◽  
Author(s):  
Martin Zacharias

AbstractDouble-strand (ds)DNA formation and dissociation are of fundamental biological importance. The negatively DNA charge influences the dsDNA stability. However, the base pairing and the stacking between neighboring bases are responsible for the sequence dependent stability of dsDNA. The stability of a dsDNA molecule can be estimated from empirical nearest-neighbor models based on contributions assigned to base pair steps along the DNA and additional parameters due to DNA termini. In efforts to separate contributions it has been concluded that base-stacking dominates dsDNA stability whereas base-pairing contributes negligibly. Using a different model for dsDNA formation we re-analyze dsDNA stability contributions and conclude that base stacking contributes already at the level of separate ssDNAs but that pairing contributions drive the dsDNA formation. The theoretical model also predicts that stability contributions of base pair steps that contain only guanine/cytosine, mixed steps and steps with only adenine/thymine follows the order 6:5:4, respectively, as expected based on the formed hydrogen bonds. The model is fully consistent with available stacking data and nearest-neighbor dsDNA parameters. It allows to assign a narrowly distributed value for the effective free energy contribution per formed hydrogen bond during dsDNA formation of −0.72 kcal·mol-1 based entirely on experimental data.


ACS Sensors ◽  
2020 ◽  
Vol 5 (8) ◽  
pp. 2514-2522
Author(s):  
Xin-Xin Peng ◽  
Tongtong Guo ◽  
Hao Lu ◽  
Linlin Yue ◽  
You Li ◽  
...  

Biomolecules ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 849 ◽  
Author(s):  
Kristen Scopino ◽  
Elliot Williams ◽  
Abdelrahman Elsayed ◽  
William A. Barr ◽  
Daniel Krizanc ◽  
...  

A longstanding challenge is to understand how ribosomes parse mRNA open reading frames (ORFs). Significantly, GCN codons are over-represented in the initial codons of ORFs of prokaryote and eukaryote mRNAs. We describe a ribosome rRNA-protein surface that interacts with an mRNA GCN codon when next in line for the ribosome A-site. The interaction surface is comprised of the edges of two stacked rRNA bases: the Watson–Crick edge of 16S/18S rRNA C1054 and the adjacent Hoogsteen edge of A1196 (Escherichia coli 16S rRNA numbering). Also part of the interaction surface, the planar guanidinium group of a conserved Arginine (R146 of yeast ribosomal protein Rps3) is stacked adjacent to A1196. On its other side, the interaction surface is anchored to the ribosome A-site through base stacking of C1054 with the wobble anticodon base of the A-site tRNA. Using molecular dynamics simulations of a 495-residue subsystem of translocating ribosomes, we observed base pairing of C1054 to nucleotide G at position 1 of the next-in-line codon, consistent with previous cryo-EM observations, and hydrogen bonding of A1196 and R146 to C at position 2. Hydrogen bonding to both of these codon positions is significantly weakened when C at position 2 is changed to G, A or U. These sequence-sensitive mRNA-ribosome interactions at the C1054-A1196-R146 (CAR) surface potentially contribute to the GCN-mediated regulation of protein translation.


Sign in / Sign up

Export Citation Format

Share Document