scholarly journals Probing remdesivir nucleotide analogue insertion to SARS-CoV-2 RNA dependent RNA polymerase in viral replication

2021 ◽  
Author(s):  
Moises Ernesto Romero ◽  
Chunhong Long ◽  
Daniel La Rocco ◽  
Anusha Mysore Keerthi ◽  
Dajun Xu ◽  
...  

Remdesivir (RDV) prodrug can be metabolized into a triphosphate form nucleotide analogue (RDV-TP) to bind and insert into the active site of viral RNA dependent RNA polymerase (RdRp) to further interfere with the viral genome replication. In this work, we computationally studied how RDV-TP binds and inserts to the SARS-CoV-2 RdRp active site, in comparison with natural nucleotide substrate adenosine triphosphate (ATP). To do that, we first constructed atomic structural models of an initial binding complex (active site open) and a substrate insertion complex (active site closed), based on high-resolution cryo-EM structures determined recently for SARS-CoV-2 RdRp or non-structural protein (nsp) 12, in complex with accessory protein factors nsp7 and nsp8. By conducting all-atom molecular dynamics simulation with umbrella sampling strategies on the nucleotide insertion between the open and closed state RdRp complexes, our studies show that RDV-TP can bind comparatively stabilized to the viral RdRp active site, as it primarily forms base stacking with the template Uracil nucleotide (at +1), which is under freely fluctuations and supports a low free energy barrier of the RDV-TP insertion (~ 1.5 kcal/mol). In comparison, the corresponding natural substrate ATP binds to the RdRp active site in Watson-Crick base pairing with the template nt, and inserts into the active site with a medium low free energy barrier (~ 2.6 kcal/mol), when the fluctuations of the template nt are well quenched. The simulations also show that the initial base stacking of RDV-TP with the template can be particularly stabilized by motif B-N691, S682, and motif F-K500 with the sugar, base, and the template backbone, respectively. Although the RDV-TP insertion can be hindered by motif-F R555/R553 interaction with the triphosphate, the ATP insertion seems to be facilitated by such interactions. The inserted RDV-TP and ATP can be further distinguished by specific sugar interaction with motif B-T687 and motif-A D623, respectively.

Author(s):  
Moises Ernesto Romero ◽  
Chunhong Long ◽  
Daniel La Rocco ◽  
Anusha Mysore Keerthi ◽  
Dajun Xu ◽  
...  

Remdesivir (RDV) prodrug can be metabolized into a triphosphate form nucleotide analogue (RDV-TP) to bind and insert into the active site of viral RNA dependent RNA polymerase (RdRp) to further...


2020 ◽  
Vol 31 (1) ◽  
Author(s):  
Son Tung Ngo

Alzheimer’s disease is known as one of the most popular forms of dementia affecting numerous people worldwide. The Amyloid beta (Aβ) peptides form to oligomeric conformations that cause the intracellular Ca2+ and Zn2+ abnormality leading to the death of neuron cells. The failure of AD therapy targeting Aβ oligomers probably caused by misunderstanding the ions transport through transmembrane Aβ (tmAβ) ion-like channel since Aβ oligomers transiently exist in a mixture order of Aβ oligomers. The high-resolution of tmAβ peptides are thus unavailable until the date. Fortunately, computational approaches are able to complement the missing experimental structures. The transmembrane 4Aβ1-42 (tm4Aβ1-42) barrel, one of the most neurotoxic elements, was thus predicted in the previous work. Therefore, in this context, the Ca2+/Zn2+ ions transport through the tm4Aβ1-42 barrel was investigated by using the fast pulling of ligand (FPL) and umbrella sampling (US) methods. Good consistent results were obtained implying that Ca2+ ion transport through tm4Aβ1-42 barrel with a lower free energy barrier compared with Zn2+ ion. The obtained results about Ca2+/Zn2+ transport across tmAβ1-42 barrel probably enhances the AD therapy


2020 ◽  
Vol 295 (47) ◽  
pp. 15902-15912 ◽  
Author(s):  
Xukai Jiang ◽  
Kai Yang ◽  
Bing Yuan ◽  
Bin Gong ◽  
Lin Wan ◽  
...  

The octapeptins are lipopeptide antibiotics that are structurally similar to polymyxins yet retain activity against polymyxin-resistant Gram-negative pathogens, suggesting they might be used to treat recalcitrant infections. However, the basis of their unique activity is unclear because of the difficulty in generating high-resolution experimental data of the interaction of antimicrobial peptides with lipid membranes. To elucidate these structure–activity relationships, we employed all-atom molecular dynamics simulations with umbrella sampling to investigate the conformational and energetic landscape of octapeptins interacting with bacterial outer membrane (OM). Specifically, we examined the interaction of octapeptin C4 and FADDI-115, lacking a single hydroxyl group compared with octapeptin C4, with the lipid A–phosphoethanolamine modified OM of Acinetobacter baumannii. Octapeptin C4 and FADDI-115 both penetrated into the OM hydrophobic center but experienced different conformational transitions from an unfolded to a folded state that was highly dependent on the structural flexibility of their respective N-terminal fatty acyl groups. The additional hydroxyl group present in the fatty acyl group of octapeptin C4 resulted in the molecule becoming trapped in a semifolded state, leading to a higher free energy barrier for OM penetration. The free energy barrier for the translocation through the OM hydrophobic layer was ∼72 kcal/mol for octapeptin C4 and 62 kcal/mol for FADDI-115. Our results help to explain the lower antimicrobial activity previously observed for octapeptin C4 compared with FADDI-115 and more broadly improve our understanding of the structure–function relationships of octapeptins. These findings may facilitate the discovery of next-generation octapeptins against polymyxin-resistant Gram-negative 'superbugs.'


2018 ◽  
Vol 17 (08) ◽  
pp. 1850050 ◽  
Author(s):  
Qiuhan Luo ◽  
Gang Li ◽  
Junping Xiao ◽  
Chunhui Yin ◽  
Yahui He ◽  
...  

Sulfonylureas are an important group of herbicides widely used for a range of weeds and grasses control particularly in cereals. However, some of them tend to persist for years in environments. Hydrolysis is the primary pathway for their degradation. To understand the hydrolysis behavior of sulfonylurea herbicides, the hydrolysis mechanism of metsulfuron-methyl, a typical sulfonylurea, was investigated using density functional theory (DFT) at the B3LYP/6-31[Formula: see text]G(d,p) level. The hydrolysis of metsulfuron-methyl resembles nucleophilic substitution by a water molecule attacking the carbonyl group from aryl side (pathway a) or from heterocycle side (pathway b). In the direct hydrolysis, the carbonyl group is directly attacked by one water molecule to form benzene sulfonamide or heterocyclic amine; the free energy barrier is about 52–58[Formula: see text]kcal[Formula: see text]mol[Formula: see text]. In the autocatalytic hydrolysis, with the second water molecule acting as a catalyst, the free energy barrier, which is about 43–45[Formula: see text]kcal[Formula: see text]mol[Formula: see text], is remarkably reduced by about 11[Formula: see text]kcal[Formula: see text]mol[Formula: see text]. It is obvious that water molecules play a significant catalytic role during the hydrolysis of sulfonylureas.


2013 ◽  
Vol 12 (08) ◽  
pp. 1341004
Author(s):  
XUE WU ◽  
TING FU ◽  
ZHI-LONG XIU ◽  
LIU YIN ◽  
JIN-GUANG WANG ◽  
...  

Prions are associated with neurodegenerative diseases induced by transmissible spongiform encephalopathies. The infectious scrapie form is referred to as PrP Sc , which has conformational change from normal prion with predominant α-helical conformation to the abnormal PrP Sc that is rich in β-sheet content. Neurodegenerative diseases have been found from both human and bovine sources, but there are no reports about infected by transmissible spongiform encephalopathies from rabbit, canine and horse sources. Here we used coarse-grained Gō model to compare the difference among human, bovine, rabbit, canine, and horse normal (cellular) prion proteins. The denatured state of normal prion has relation with the conversion from normal to abnormal prion protein, so we used all-atom Gō model to investigate the folding pathway and energy landscape for human prion protein. Through using coarse-grained Gō model, the cooperativity of the five prion proteins was characterized in terms of calorimetric criterion, sigmoidal transition, and free-energy profile. The rabbit and horse prion proteins have higher folding free-energy barrier and cooperativity, and canine prion protein has slightly higher folding free-energy barrier comparing with human and bovine prion proteins. The results from all-atom Gō model confirmed the validity of C α-Gō model. The correlations of our results with previous experimental and theoretical researches were discussed.


2011 ◽  
Vol 92 (7) ◽  
pp. 1607-1616 ◽  
Author(s):  
Ji-Hye Lee ◽  
Intekhab Alam ◽  
Kang Rok Han ◽  
Sunyoung Cho ◽  
Sungho Shin ◽  
...  

Norovirus is one of the leading agents of gastroenteritis and is a major public health concern. In this study, the crystal structures of recombinant RNA-dependent RNA polymerase (RdRp) from murine norovirus-1 (MNV-1) and its complex with 5-fluorouracil (5FU) were determined at 2.5 Å resolution. Crystals with C2 symmetry revealed a dimer with half a dimer in the asymmetrical unit, and the protein exists predominantly as a monomer in solution, in equilibrium with a smaller population of dimers, trimers and hexamers. MNV-1 RdRp exhibited polymerization activity with a right-hand fold typical of polynucleotide polymerases. The metal ion modelled in close proximity to the active site was found to be coordinated tetrahedrally to the carboxyl groups of aspartate clusters. The orientation of 5FU observed in three molecules in the asymmetrical unit was found to be slightly different, but it was stabilized by a network of favourable interactions with the conserved active-site residues Arg185, Asp245, Asp346, Asp347 and Arg395. The information gained on the structural and functional features of MNV-1 RdRp will be helpful in understanding replication of norovirus and in designing novel therapeutic agents against this important pathogen.


2020 ◽  
Vol 5 (4) ◽  
pp. 651-662 ◽  
Author(s):  
Gourav Shrivastav ◽  
Tuhin S. Khan ◽  
Manish Agarwal ◽  
M. Ali Haider

Utilizing the differential stabilization of reactant and transition state in the polar and apolar solvents to lower the activation free energy barrier for acid-catalyzed dehydration of hydroxy lactones.


2020 ◽  
Vol 295 (20) ◽  
pp. 6785-6797 ◽  
Author(s):  
Calvin J. Gordon ◽  
Egor P. Tchesnokov ◽  
Emma Woolner ◽  
Jason K. Perry ◽  
Joy Y. Feng ◽  
...  

Effective treatments for coronavirus disease 2019 (COVID-19) are urgently needed to control this current pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Replication of SARS-CoV-2 depends on the viral RNA-dependent RNA polymerase (RdRp), which is the likely target of the investigational nucleotide analogue remdesivir (RDV). RDV shows broad-spectrum antiviral activity against RNA viruses, and previous studies with RdRps from Ebola virus and Middle East respiratory syndrome coronavirus (MERS-CoV) have revealed that delayed chain termination is RDV's plausible mechanism of action. Here, we expressed and purified active SARS-CoV-2 RdRp composed of the nonstructural proteins nsp8 and nsp12. Enzyme kinetics indicated that this RdRp efficiently incorporates the active triphosphate form of RDV (RDV-TP) into RNA. Incorporation of RDV-TP at position i caused termination of RNA synthesis at position i+3. We obtained almost identical results with SARS-CoV, MERS-CoV, and SARS-CoV-2 RdRps. A unique property of RDV-TP is its high selectivity over incorporation of its natural nucleotide counterpart ATP. In this regard, the triphosphate forms of 2′-C-methylated compounds, including sofosbuvir, approved for the management of hepatitis C virus infection, and the broad-acting antivirals favipiravir and ribavirin, exhibited significant deficits. Furthermore, we provide evidence for the target specificity of RDV, as RDV-TP was less efficiently incorporated by the distantly related Lassa virus RdRp, and termination of RNA synthesis was not observed. These results collectively provide a unifying, refined mechanism of RDV-mediated RNA synthesis inhibition in coronaviruses and define this nucleotide analogue as a direct-acting antiviral.


Sign in / Sign up

Export Citation Format

Share Document