scholarly journals Toxic potency-adjusted control of air pollution for solid fuel combustion

Nature Energy ◽  
2022 ◽  
Author(s):  
Di Wu ◽  
Haotian Zheng ◽  
Qing Li ◽  
Ling Jin ◽  
Rui Lyu ◽  
...  

AbstractThe combustion of solid fuels, including coal and biomass, is a main anthropogenic source of atmospheric particulate matter (PM). The hidden costs have been underestimated due to lack of consideration of the toxicity of PM. Here we report the unequal toxicity of inhalable PM emitted from energy use in the residential sector and coal-fired power plants (CFPPs). The incomplete burning of solid fuels in household stoves generates much higher concentrations of carbonaceous matter, resulting in more than one order of magnitude greater toxicity than that from CFPPs. When compared with CFPPs, the residential sector consumed only a tenth of solid fuels in mainland China in 2017, but it contributed about 200-fold higher of the population-weighted toxic potency-adjusted PM2.5 exposure risk. We suggest that PM2.5-related toxicity should be considered when making air pollution emission control strategies, and incomplete combustion sources should receive more policy attention to reduce exposure risks.

2013 ◽  
Vol 291-294 ◽  
pp. 1365-1369
Author(s):  
Jing Zhang ◽  
Ru Guo

Most Chinese cities are experiencing rapid urbanization and economic growth. It is needed to explore how a city’s energy system evolves and how it can be altered to reduce carbon emissions. This paper analyzed energy consumption and related CO2 emissions in Beijing and Shanghai. A rapid growth in energy consumption during the last two decades is evident. Shanghai presents higher energy intensity than Beijing, mainly due to the larger share of the secondary industry in economy. Energy consumption by the residential sector is higher in Beijing, despite a larger population in Shanghai. The CO2 emissions by the end-use energy in 2010 are 152 and 259 million ton in Beijing and Shanghai, respectively. Electricity usage presents an important share of energy consumption and CO2 emissions. Thus, development of renewable energy for electricity generation and improvement of the technologies in thermal power plants are important to reduce the future carbon emissions.


2020 ◽  
Vol 6 (44) ◽  
pp. eaba7621
Author(s):  
Xiao Yun ◽  
Guofeng Shen ◽  
Huizhong Shen ◽  
Wenjun Meng ◽  
Yilin Chen ◽  
...  

Residential contribution to air pollution–associated health impacts is critical, but inadequately addressed because of data gaps. Here, we fully model the effects of residential energy use on emissions, outdoor and indoor PM2.5 concentrations, exposure, and premature deaths using updated energy data. We show that the residential sector contributed only 7.5% of total energy consumption but contributed 27% of primary PM2.5 emissions; 23 and 71% of the outdoor and indoor PM2.5 concentrations, respectively; 68% of PM2.5 exposure; and 67% of PM2.5-induced premature deaths in 2014 in China, with a progressive order of magnitude increase from sources to receptors. Biomass fuels and coal provided similar contributions to health impacts. These findings are particularly true for rural populations, which contribute more to emissions and face higher premature death risks than urban populations. The impacts of both residential and nonresidential emissions are interconnected, and efforts are necessary to simultaneously mitigate both emission types.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Naim Jabbour

Natural resources including energy are very scarce in Lebanon. As such, the country imports more than 90% of the fuel to satisfy its energy and electricity needs (EIA), primarily fossil fuel based. Furthermore, fuel consumption is forecasted to grow over the next decade, exacerbating the reliance on foreign volatile energy sources. This paper provides an overview of the energy sector in Lebanon and its impact on air pollution. Similarly, population growth is expected to continue on a steady and consistent rate, while resources remain limited. To that end, electricity consumption is disproportionate to population growth, indicative of severe inefficiencies and waste. Furthermore, the total energy consumption per household in Lebanon far exceeded its counterparts in the EU and the US. The country’s energy production market is severely volatile and unreliable, resulting in only a 50-70% coverage of electrical needs from public governmental sources. Consequently, current public electric generation capacity is not meeting con-sumption patterns, resulting in widespread power outages, blackouts, and a heavy reliance on the unregulated” mafia-like” private generation market. Furthermore, energy consumption patterns have been increasing over the past decade and are projected to continue to grow over the next 10 years. Correspondingly, emissions patterns follow a similar trend to energy consumption pat-terns. As a result, the World Health Organization (WHO) estimated a 100% of the population is exposed to pollution levels above the recommended guidelines. Moreover, governmental failure to regulate and protect the environment has severely impacted the country’s natural resources and overall environment. As such, Lebanon was ranked 5th in the 2019 Pollution Index for Country, which examined air pollution in countries worldwide. The World Health Organization estimates the levels of air pollution in Leb-anon to be at a tipping point. Furthermore, air pollution is considered the greatest threat towards the health of Lebanese citizens. The proliferation of the transportation sector, unregulated energy sector, and private diesel generators are major contributors to air pollution in the beleaguered nation. To that end, the residential sector constituted a major contributor to this pollution, account-ing for more than 30% of total energy use in the country and its associated emissions. Most of this energy is provided via liquified petroleum gas (LPG) generated electricity, a major fossil fuel. This paper explores the state of energy and electricity in Lebanon and their implications on air pollution. It also examines the state of energy use within the residential sector as it relates to overall electricity and pollution patterns. Lastly, the paper provides a sampling of alternative solutions and mechanisms to combat the electricity crisis and air pollution problems. Keywords: Energy Consumption; Electricity Generation; Residential Energy Patterns; Air Pollution


2019 ◽  
Vol 12 (1) ◽  
pp. 22-28
Author(s):  
V. Ye. Mikhailov ◽  
S. P. Kolpakov ◽  
L. A. Khomenok ◽  
N. S. Shestakov

One of the most important issues for modern domestic power industry is the creation and further widespread introduction of solid propellant energy units for super-critical steam parameters with high efficiency (43–46%) and improved environmental parameters. This will significantly reduce the use of natural gas.At the same time, one of the major drawbacks of the operation of pulverized coal power units is the need to use a significant amount of fuel oil during start-up and shutdown of boilers to stabilize the burning of the coal torch in the variable boiler operating modes.In this regard, solid fuel TPPs need to be provided with fuel oil facilities, with all the associated problems to ensure the performance (heating of fuel oil in winter), reliability and safety. All of the above problems increase both the TPP capital construction costs, and the electricity generating cost.A practical solution to the above problems at present is the use of a plasma technology for coal torch ignition based on thermochemical preparation of fuel for combustion. The materials of the developments of JSC “NPO CKTI” on application of plasmatrons in boilers of thermal power plants at metallurgical complexes of the Russian Federation are also considered.Plasma ignition systems for solid fuels in boilers were developed by Russian specialists and were introduced at a number of coal-fi red power plants in the Russian Federation, Mongolia, North Korea, and Kazakhstan. Plasma ignition of solid fuels is widely used in China for almost 30% of power boilers.The introduction of plasma-energy technologies will improve the energy efficiency of domestic solid-fuel thermal power plants and can be widely implemented in the modernization of boilers.During the construction of new TPPs, the construction of fuel oil facilities can be abandoned altogether, which will reduce the capital costs of the construction of thermal power plants, reduce the construction footprint, and increase the TPP safety.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2917
Author(s):  
Mohammad Dabbagh ◽  
Moncef Krarti

This paper evaluates the potential energy use and peak demand savings associated with optimal controls of switchable transparent insulation systems (STIS) applied to smart windows for US residential buildings. The optimal controls are developed based on Genetic Algorithm (GA) to identify the automatic settings of the dynamic shades. First, switchable insulation systems and their operation mechanisms are briefly described when combined with smart windows. Then, the GA-based optimization approach is outlined to operate switchable insulation systems applied to windows for a prototypical US residential building. The optimized controls are implemented to reduce heating and cooling energy end-uses for a house located four US locations, during three representative days of swing, summer, and winter seasons. The performance of optimal controller is compared to that obtained using simplified rule-based control sets to operate the dynamic insulation systems. The analysis results indicate that optimized controls of STISs can save up to 81.8% in daily thermal loads compared to the simplified rule-set especially when dwellings are located in hot climates such as that of Phoenix, AZ. Moreover, optimally controlled STISs can reduce electrical peak demand by up to 49.8% compared to the simplified rule-set, indicating significant energy efficiency and demand response potentials of the SIS technology when applied to US residential buildings.


Author(s):  
Daniel Bowie ◽  
Cynthia A. Cruickshank

Energy use for space cooling has increased by 156% from 1990 to 2010 in the Canadian residential sector. In many parts of the country, the increasing use of electrically driven air-conditioners has begun to shift the peak load on the electricity grid from the coldest days of winter to the hottest days of summer. Many of Canada’s major electric utilities providers rely on fossil fuels to generate the additional capacity needed to meet the peak demand, resulting in significant greenhouse gas emissions. Solar-driven sorption chillers remain one of the possible solutions for shaving the peak loads experienced by the electricity grid. This paper presents a review of the recent developments in the research of adsorption and absorption chillers, as well as a comparison of the two technologies based on the latest published experimental results found in the literature. Adsorption chillers continue to evolve in their design, including the use of new consolidated and composite adsorbents, the integration of coated adsorbers into internal heat exchangers, and newly developed advanced cycles for heat and mass recovery. While the physical design of adsorption chillers continues to be advanced, the development of absorption chillers for solar cooling applications has largely been focused on optimizing the system as a whole through improved control strategies and the implementation of newly developed high performance solar collectors. Finally, the paper aims to assess the current state of development of solar-driven sorption chillers to provide insight into their applicability in the Canadian residential sector, as well as the remaining challenges facing this technology.


Author(s):  
Muhammadiya Rifqi ◽  
Heni Fitriani ◽  
Puteri Kusuma Wardhani

Buildings contribute more than 40% of world energy consumption, so it is feared that it will cause energy problems in thefuture, especially in the construction sector. One solution to reducing this problem is by analyzing energy use at the initialdesign stage and utilizing solar energy as one of the solar power plants (PLTS) in office buildings. To analyze the use ofenergy in buildings, Building Information Modeling (BIM) was used. The purpose of this research is to analyze the annualenergy level of office buildings in Palembang using BIM software, namely Autodesk Revit. The number of solar panels aswell as the amount of energy were also identified using web-based software (HelioScope) resulting the economic feasibilityas indicated by the installation of solar panels as a component of PV mini-grid. The results showed that the use of BIMtechnology in analyzing building energy can provide a detailed description of the building model at the design stage. Revitanalysis indicates that the building consumed electrical energy per year for about 3,647,713 kWh with a roof area of 1,657m2. In addition, based on the HelioScope analysis, the use of renewable energy from the installation of PLTS was 152,900kWh/year. Meanwhile, for economic feasibility analysis, the installation of PLTS in office buildings can provide a positive NetPresent Value (NPV), indicating a feasible project.


Sign in / Sign up

Export Citation Format

Share Document