intrinsic absorption
Recently Published Documents


TOTAL DOCUMENTS

120
(FIVE YEARS 12)

H-INDEX

33
(FIVE YEARS 2)

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Yu Zhou ◽  
Zheng Qin ◽  
Zhongzhu Liang ◽  
Dejia Meng ◽  
Haiyang Xu ◽  
...  

AbstractBroadband metamaterials absorbers with high absorption, ultrathin thickness and easy configurations are in great demand for many potential applications. In this paper, we first analyse the coupling resonances in a Ti/Ge/Ti three-layer absorber, which can realise broadband absorption from 8 to 12 μm. Then we experimentally demonstrate two types of absorbers based on the Ti/Ge/Si3N4/Ti configuration. By taking advantage of coupling surface plasmon resonances and intrinsic absorption of lossy material Si3N4, the average absorptions of two types of absorbers achieve almost 95% from 8 to 14 μm (experiment result: 78% from 6.5 to 13.5 μm). In order to expand the absorption bandwidth, we further propose two Ti/Si/SiO2/Ti absorbers which can absorb 92% and 87% of ultra-broadband light in the 14–30 μm and 8–30 μm spectral range, respectively. Our findings establish general and systematic strategies for guiding the design of metamaterial absorbers with excellent broadband absorption and pave the way for enhancing the optical performance in applications of infrared thermal emitters, imaging and photodetectors.


2021 ◽  
Author(s):  
Takashi Hirose ◽  
Hideki Ueda ◽  
Eisuke Fujita

<p>    Estimating seismic scattering and intrinsic absorption parameters, which are measures of medium heterogeneity, is important for understanding the complex structure in shallow regions of volcanoes. In recent years, seismic ambient noise cross-correlation functions (CCFs) have been used instead of records of natural earthquakes or active seismic experiments to estimate those parameters (e.g., Hirose et al., 2019; Hirose et al., 2020; van Dinther et al., 2020). This passive approach possibly allows us to estimate scattering and intrinsic absorption parameters in previously unmeasured regions and frequency bands. In this study, we apply the passive estimation method proposed by Hirose et al. (2019) to 18 active volcanoes in Japan and measure those parameters of Rayleigh waves. We used three-component seismic ambient noise data in the frequency bands of 0.5-1 Hz, 1-2 Hz, and 2-4 Hz at seismic stations of NIED, JMA, HSRI, and MFRI. Before computing CCFs, the temporal flattening technique (Weaver, 2011) was applied to ambient noise data for reducing the effect of temporal fluctuations in noise levels with retaining relative amplitudes among the stations. Daily CCFs of three components (ZZ, ZR, ZT) were computed by stacking 10-minutes-CCFs. We stacked daily CCFs over 1 year and computed mean squared envelopes by smoothing squared amplitude with 4 s (0.5-1 Hz), 2 s (1-2 Hz), or 1 s (2-4 Hz) long time windows. Scattering and intrinsic absorption parameters were estimated by modeling the space-time distributions of energy densities calculated from CCFs with 2D radiative transfer theory. Best-fit values of scattering mean free path at the 18 active volcanoes range between 1.0-4.6 km at 0.5-1Hz band, 0.7-2.9 km at 1-2 Hz band, and 0.9-2.9 km at 2-4 Hz band, respectively. These values are 2 orders of magnitude shorter than those in non-volcanic regions (e.g., Sato et al., 2012). Those of intrinsic absorption parameter range between 0.05-0.26 s<sup>-1</sup> at the 0.5-1 Hz band, 0.06-0.24 s<sup>-1</sup> at the 1-2 Hz band, and 0.06-0.32 s<sup>-1 </sup>at the 2-4 Hz band, respectively. They are at most one order of magnitude larger than those in the non-volcanic regions. Especially strong intrinsic attenuations are estimated at volcanic islands. Water-bearing layers at a depth of several hundred meters below these islands may cause such strong intrinsic attenuations. The frequency dependence of scattering attenuations is also strong at these volcanic islands, suggesting non-uniform structures that largely fluctuate along depths. The results of this study suggest that the passive estimation method of scattering and intrinsic absorption parameters proposed by Hirose et al. (2019) is applicable to various volcanoes. Comparing estimated values of these parameters at various volcanoes will improve our understanding of complex structure at the shallow regions of volcanoes. Moreover, the parameters estimated in this study will boost locating spatial distributions of seismic velocity and/or scattering property changes associated with volcanic activities at the 18 volcanoes.</p><p>Acknowledgments: We used seismograms recorded by Japan Meteorological Agency (JMA), Hot Springs Research Institute (HSRI) of Kanagawa Prefecture, and Mount Fuji Research Institute (MFRI), Yamanashi Prefectural Government.</p>


2020 ◽  
Vol 223 (2) ◽  
pp. 1418-1431
Author(s):  
Rahul Biswas ◽  
Chandrani Singh

SUMMARY 2-D attenuation maps are produced for the crust of western Tibet using local earthquakes which are recorded by an array of 31 broad-band stations operated from 2007 July to 2011 May. Relative contribution of scattering ($Q_{sc}^{-1}$) and intrinsic ($Q_{i}^{-1}$) attenuation have been calculated using Multiple Lapse Time Window Analysis under the assumption of uniform distribution of multiple isotropic scattering and intrinsic absorption in a medium for five different frequency bands centred at 1.5, 3, 6, 12 and 18 Hz, respectively. All the events are selected on the basis of high signal-to-noise ratio having hypocentral distance within 200 km from the respective stations. The obtained Q−1 values show a strong frequency dependent nature which can be correlated to the degree of tectonic complexity and the heterogeneities present in the medium. The intrinsic absorption is found to be the dominant mechanism at all the frequency ranges for all stations except few (WT03, WT07 and WT13) at 18 Hz, which may be correlated with the presence of partial melt, geothermal fluids, hydrothermal springs, mantle-derived fluids and radioactivity in the crust of western Tibet. We have divided the entire area into two regions across the Karakoram fault (KKF) to explore the variations of crustal attenuation properties. The first part covers the northeastern of KKF referred as Region 1 while the second part covers the southwestern of KKF referred as Region 2. The spatial variations of $Q_{i}^{-1}$ across the region exhibit significant differences between Regions 1 and 2 at all the investigated frequencies. Interestingly, Region 1 exhibits higher $Q_{i}^{-1}$ than Region 2 at lower frequencies, whereas $Q_{i}^{-1}$ shows opposite trends at higher frequencies (> 6 Hz) as it shows higher values in Region 2 than Region 1. We find that the obtained values of Q−1 are also in good agreement with the other segments of Himalaya and Tibet as well as different tectonic regions in the world.


2020 ◽  
Vol 129 (7) ◽  
pp. 998
Author(s):  
В.С. Ноздрин ◽  
С.В. Чучупал ◽  
Г.А. Командин ◽  
В.Н. Курлов ◽  
О.Е. Породинков ◽  
...  

Measurements of the transmission and reflection spectra of a CdSiP2 single crystal, performed in the temperature range from 80 to 300 K using pulsed terahertz and infrared Fourier spectroscopy, revealed a significant impact of post-growth defects on absorption in the THz range. It was found that this absorption is weakly dependent on temperature, in contrast to the previously obtained results for another crystal of the chalcopyrite family with s significantly lower concentration of defects. When cooling, the intrinsic absorption mechanisms were minimized and the contribution of defects to absorption was extracted


2019 ◽  
Vol 488 (4) ◽  
pp. 4690-4731 ◽  
Author(s):  
Chris Culliton ◽  
Jane Charlton ◽  
Mike Eracleous ◽  
Rajib Ganguly ◽  
Toru Misawa

ABSTRACT We use the spectra of 73 quasars (1.5 ≲ z ≲ 5) from the VLT UVES archive to catalogue and study narrow absorption lines (NALs) that are physically associated with (intrinsic to) the quasars. We identify 410 NAL systems containing C iv, N v, and/or Si iv doublets. Based on the assumption that only systems intrinsic to the quasar can exhibit partial coverage of the background source(s), we identify 34 reliably intrinsic NAL systems and 11 systems that are potentially intrinsic, as well as 4 mini-broad absorption lines (BALs) and 1 BAL. The minimum fraction of quasars with at least one intrinsic system is shown to be 38 per cent. We identify intrinsic NALs with a wide range of properties, including apparent ejection velocity, coverage fraction, and ionization level. There is a continuous distribution of properties, rather than discrete families, ranging from partially covered C iv systems with black Ly α and with a separate low-ionization gas phase to partially covered N v systems with partially covered Ly α and without detected low-ionization gas. Even more highly ionized associated and intrinsic absorption systems (O vi, Ne viii, and Mg x doublets) have been presented in separate studies; these may represent an extension of the above sequence. We also use the properties of the NALs in conjunction with recent models of accretion disc winds that predict the origins of the absorbing gas in order to determine the model that best characterizes our sample. Additionally, we construct a model describing the spatial distributions, geometries, and varied ionization structures of intrinsic NALs.


2019 ◽  
Vol 15 (S350) ◽  
pp. 127-131
Author(s):  
Mark H. Stockett ◽  
Mikael Björkhage ◽  
Henrik Cederquist ◽  
Henning T. Schmidt ◽  
Zettergren Henning

AbstractThe multi-photon photodissociation (MPD) action spectrum of the coronene cation $$({{\rm{C}}_{24}}{\rm{H}}_{12}^ + )$$ has been measured as a function of storage time up to 60 s in the cryogenic electrostatic storage ring DESIREE. These measurements reveal not only the intrinsic absorption profile of isolated coronene cations, but also the rate at which hot-band absorptions are quenched by radiative cooling. The cooling rate is interpreted using a Simple Harmonic Cascade model of infrared vibrational emission.


Sign in / Sign up

Export Citation Format

Share Document