deflection system
Recently Published Documents


TOTAL DOCUMENTS

124
(FIVE YEARS 6)

H-INDEX

13
(FIVE YEARS 0)

2021 ◽  
pp. 113288
Author(s):  
M. Krysztof ◽  
M. Białas ◽  
P. Szyszka ◽  
T. Grzebyk ◽  
A. Górecka-Drzazga

2020 ◽  
Vol 2 (7(76)) ◽  
pp. 21-26
Author(s):  
Volodya Dzharov

This paper explores patterns of electronic beam movement by controlling the transverse axis of the bundle of the uniform magnetic field generated by the coils of the electronic gun. For electron beam processes, the type of process, the technological mode, the design dimensions of the electronic gun, and the shape of the machined parts determines beam motion. The free and precise movement on random trajectories determines the possible applications of the electron beam process in performing various scientific experiments on material processing.


Author(s):  
Viacheslav Neskoromnykh ◽  
◽  
Anton Golovchenko ◽  

Introduction. The method of rotary-percussion drilling with downhole hammers is widely used in mining and geological exploration and is also one of the most promising due to the high well flow rates combined with the durability and reliability of designs used in method implementation. One of the main constraints for field use is the lack of a commercially available deflection system capable of adjusting the direction of the wells with high mechanical speed without reducing the technological parameters of drilling. Research aim is to analyze the performance and modernize the designs of the deflection system based on the downhole machine from the point of view of increasing the accuracy of hole deviation change, as well as to make a dependence synthesis to determine the intensity of the hole deviation change when implementing the mechanism of rock destruction by eccentric impact pulses. Research methodology. The study is based on a set of methods of basic scientific research, in particular analysis, synthesis, formalization, abstraction. Conclusions. Dependence is given for determining the intensity of the hole deviation change depending on the impact system parameters. The working conditions of the hammer with a displaced center of gravity in the design of the deflection system are investigated, an empirical dependence is given for determining the magnitude of the orientation error, and recommendations are given for its reduction. The area of possible application of the presented technical solution is analyzed.


Author(s):  
Patrick Taschner ◽  
Jan F. Düsing ◽  
Jürgen Koch ◽  
Peter Jäschke ◽  
Stefan Kaierle ◽  
...  

Author(s):  
Mojdeh Asadollahi Pajouh ◽  
Robert W. Bielenberg ◽  
John D. Reid ◽  
Jennifer D. Schmidt ◽  
Ronald K. Faller ◽  
...  

Portable concrete barriers (PCBs) are often used in applications in which limited deflection is desired during vehicle impacts, such as bridge decks and work zones. In an earlier study, a reduced-deflection, stiffening system was configured for use with non-anchored, F-shape PCBs and was successfully crash tested under Manual for Assessing Safety Hardware (MASH) safety performance criteria. However, details and guidance for implementing this barrier system outside the length-of-need, including within transitions to other barrier systems, were not provided. The focus of this study was to develop a crashworthy transition design between the reduced-deflection, F-shape PCB system to free-standing, F-shape PCB segments using engineering analysis and LS-DYNA computer simulation. First, the continuous steel tubes in the reduced-deflection system were tapered down to the surface of the free-standing PCB segments to reduce the potential for vehicle snag. In addition, steel tube spacers were added at the base of the two joints upstream from the reduced-deflection system to increase the stiffness of adjacent free-standing PCBs. Simulations were performed to determine the critical impact points for use in a full-scale crash testing program. It was recommended that three full-scale crash tests be conducted, two tests with a 2270P pickup truck vehicle and one test with an 1100C passenger car, to evaluate the proposed design system with impacts at the recommended critical impact points.


2018 ◽  
Vol 5 (1) ◽  
pp. 34-45 ◽  
Author(s):  
John Brophy ◽  
Nathan Strange ◽  
Dan Goebela ◽  
Shawn Johnson ◽  
Dan Mazanek ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document