scholarly journals Comprehensive understanding of acetohydroxyacid synthase inhibition by different herbicide families

2017 ◽  
Vol 114 (7) ◽  
pp. E1091-E1100 ◽  
Author(s):  
Mario D. Garcia ◽  
Amanda Nouwens ◽  
Thierry G. Lonhienne ◽  
Luke W. Guddat

Five commercial herbicide families inhibit acetohydroxyacid synthase (AHAS, E.C. 2.2.1.6), which is the first enzyme in the branched-chain amino acid biosynthesis pathway. The popularity of these herbicides is due to their low application rates, high crop vs. weed selectivity, and low toxicity in animals. Here, we have determined the crystal structures of Arabidopsis thaliana AHAS in complex with two members of the pyrimidinyl-benzoate (PYB) and two members of the sulfonylamino-carbonyl-triazolinone (SCT) herbicide families, revealing the structural basis for their inhibitory activity. Bispyribac, a member of the PYBs, possesses three aromatic rings and these adopt a twisted “S”-shaped conformation when bound to A. thaliana AHAS (AtAHAS) with the pyrimidinyl group inserted deepest into the herbicide binding site. The SCTs bind such that the triazolinone ring is inserted deepest into the herbicide binding site. Both compound classes fill the channel that leads to the active site, thus preventing substrate binding. The crystal structures and mass spectrometry also show that when these herbicides bind, thiamine diphosphate (ThDP) is modified. When the PYBs bind, the thiazolium ring is cleaved, but when the SCTs bind, ThDP is modified to thiamine 2-thiazolone diphosphate. Kinetic studies show that these compounds not only trigger reversible accumulative inhibition of AHAS, but also can induce inhibition linked with ThDP degradation. Here, we describe the features that contribute to the extraordinarily powerful herbicidal activity exhibited by four classes of AHAS inhibitors.

2018 ◽  
Vol 115 (41) ◽  
pp. E9649-E9658 ◽  
Author(s):  
Mario D. Garcia ◽  
Sheena M. H. Chua ◽  
Yu-Shang Low ◽  
Yu-Ting Lee ◽  
Kylie Agnew-Francis ◽  
...  

The increased prevalence of drug-resistant human pathogenic fungal diseases poses a major threat to global human health. Thus, new drugs are urgently required to combat these infections. Here, we demonstrate that acetohydroxyacid synthase (AHAS), the first enzyme in the branched-chain amino acid biosynthesis pathway, is a promising new target for antifungal drug discovery. First, we show that several AHAS inhibitors developed as commercial herbicides are powerful accumulative inhibitors of Candida albicans AHAS (Ki values as low as 800 pM) and have determined high-resolution crystal structures of this enzyme in complex with several of these herbicides. In addition, we have demonstrated that chlorimuron ethyl (CE), a member of the sulfonylurea herbicide family, has potent antifungal activity against five different Candida species and Cryptococcus neoformans (with minimum inhibitory concentration, 50% values as low as 7 nM). Furthermore, in these assays, we have shown CE and itraconazole (a P450 inhibitor) can act synergistically to further improve potency. Finally, we show in Candida albicans-infected mice that CE is highly effective in clearing pathogenic fungal burden in the lungs, liver, and spleen, thus reducing overall mortality rates. Therefore, in view of their low toxicity to human cells, AHAS inhibitors represent a new class of antifungal drug candidates.


2020 ◽  
Author(s):  
Lan Guan ◽  
Parameswaran Hariharan

AbstractThe symporter melibiose permease MelB is the best-studied representative from MFS_2 family and the only protein in this large family with crystal structure determined. Previous thermodynamic studies show that MelB utilizes a cooperative binding as the core mechanism for its obligatory symport. Here we present two sugar-bound X-ray crystal structures of a Salmonella typhimurium MelB D59C uniport mutant that binds and catalyzes melibiose transport uncoupled to either cation, as determined by biochemical and biophysical characterizations. The two structures with bound nitrophenyl-α-D-galactoside or dodecyl-β-D-melibioside, which were refined to a resolution of 3.05 or 3.15 Å, respectively, are virtually identical at an outward-facing conformation; each one contains a α-galactoside molecule in the middle of protein. In the substrate-binding site, the galactosyl moiety on both ligands are at an essentially same configuration, so a galactoside specificity determinant pocket can be recognized, and hence the molecular recognition mechanism for the binding of sugar in MelB is deciphered. The data also allow to assign the conserved cation-binding pocket, which is directly connected to the sugar specificity determinant pocket. The intimate connection between the two selection sites lays the structural basis for the cooperative binding and coupled transport. This key structural finding answered the long-standing question on the substrate binding for the Na+-coupled MFS family of transporters.SignificanceMajor facilitator superfamily_2 transporters contain >10,000 members that are widely expressed from bacteria to mammalian cells, and catalyze uptake of varied nutrients from sugars to phospholipids. While several crystal structures with bound sugar for other MFS permeases have been determined, they are either uniporters or symporters coupled solely to H+. MelB catalyzes melibiose symport with either Na+, Li+, or H+, a prototype for Na+-coupled MFS transporters, but its sugar recognition has been a long-unsolved puzzle. Two high-resolution crystal structures presented here clearly reveal the molecular recognition mechanism for the binding of sugar in MelB. The substrate-binding site is characterized with a small specificity groove adjoining a large nonspecific cavity, which could offer a potential for future exploration of active transporters for drug delivery.


2004 ◽  
Vol 18 (7) ◽  
pp. 1798-1807 ◽  
Author(s):  
Wei Qiu ◽  
Ming Zhou ◽  
Fernand Labrie ◽  
Sheng-Xiang Lin

Abstract Human type 5 17β-hydroxysteroid dehydrogenase (17β-HSD5;AKR1C3) plays a major role in the metabolism of androgens in peripheral tissues. In prostate basal cells, this enzyme is involved in the transformation of dehydroepiandrosterone into dihydrotestosterone, the most potent androgen. It is thus a potential target for prostate cancer therapy because it is understood that the testosterone formation by this enzyme is an important factor, particularly in patients who have undergone surgical or medical castration. Here we report the first structure of a human type 5 17β-HSD in two ternary complexes, in which we found that the androstenedione molecule has a different binding position from that of testosterone. The two testosterone-binding orientations in the substrate-binding site demonstrate the structural basis of the alternative binding and multispecificity of the enzyme. Phe306 and Trp227 are the key residues involved in ligand recognition as well as product release. A safety belt in the cofactor-binding site enhances nicotinamide adenine dinucleotide phosphate binding and accounts for its high affinity as demonstrated by kinetic studies. These structures have provided a dynamic view of the enzyme reaction converting androstenedione to testosterone as well as valuable information for the development of potent enzyme inhibitors.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Y. S. Low ◽  
M. D. Garcia ◽  
T. Lonhienne ◽  
J. A. Fraser ◽  
G. Schenk ◽  
...  

AbstractAspergillus fumigatus is a fungal pathogen whose effects can be debilitating and potentially fatal in immunocompromised patients. Current drug treatment options for this infectious disease are limited to just a few choices (e.g. voriconazole and amphotericin B) and these themselves have limitations due to potentially adverse side effects. Furthermore, the likelihood of the development of resistance to these current drugs is ever present. Thus, new treatment options are needed for this infection. A new potential antifungal drug target is acetohydroxyacid synthase (AHAS; EC 2.2.1.6), the first enzyme in the branched chain amino acid biosynthesis pathway, and a target for many commercial herbicides. In this study, we have expressed, purified and characterised the catalytic subunit of AHAS from A. fumigatus and determined the inhibition constants for several known herbicides. The most potent of these, penoxsulam and metosulam, have Ki values of 1.8 ± 0.9 nM and 1.4 ± 0.2 nM, respectively. Molecular modelling shows that these compounds are likely to bind into the herbicide binding pocket in a mode similar to Candida albicans AHAS. We have also shown that these two compounds inhibit A. fumigatus growth at a concentration of 25 µg/mL. Thus, AHAS inhibitors are promising leads for the development of new anti-aspergillosis therapeutics.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 122-122 ◽  
Author(s):  
Amy E. Schmidt ◽  
Pooja Shah ◽  
Emily M. Gauthier ◽  
S. Paul Bajaj

Abstract During physiologic coagulation, the factor VIIa (FVIIa)/tissue factor (TF) complex activates FIX and FX. FVIIa consists of a N-terminal γ-carboxyglutamic acid (Gla) domain, two epidermal growth factor-like (EGF) domains, and a C-terminal serine protease domain. We obtained crystals of FVIIa/soluble TF in the presence of Na+, Rb+, or Choline+ (Ch+) under conditions containing micromolar concentrations of Zn2+. Rb+ is a large monovalent ion and has been used to identify Na+-sites in several proteins; whereas, Ch+ cannot substitute for Na+. The various crystals diffracted from 2.0 to 2.4 Å and belonged to the space group P212121. In the crystal structures, Na+ or Rb+ in FVIIa coordinates to the carbonyl groups of residues 185 (chymotrypsin numbering), 185A, 221, and 224 as well as to two water molecules. Thus, the Na+-site in FVIIa is similar to that of FXa and activated protein C but not to that of thrombin. Ca2+ in the protease domain of FVIIa is coordinated to the carboxylates of Glu70 and Glu80 as seen earlier by Banner and coworkers. Additionally, the crystal structures also showed two Zn2+-sites, one involving His71 and the other involving His117. The Zn2+-sites are unique to FVIIa since the His residues are not present in other proteases. To investigate the role of Na+, Ca2+, and Zn2+-sites in the protease domain of FVIIa, a series of biochemical and kinetic studies were performed. Na+ increased the kcat for hydrolysis of S-2288 (H-D-Ile-Pro-Arg-p-nitroanilide) ~22-fold by FVIIaWT whereas Ca2+ increased it ~by 230-fold. In the presence of Ca2+, Na+ had virtually no effect on the hydrolysis of S-2288; however, in the presence of Na+, Ca2+ increased the kcat ~12-fold. Thus, the increase in kcat by Ca2+ in the presence or absence of Na+ was similar (~250-fold). Further, Na+ had no effect on Km whereas Ca2+ increased it ~3.5-fold. However, the increase by in Km is biologically not pertinent since the Gla and EGF1 domains of FVIIa determine the Km for activation of FIX and FX. Moreover, FVIIaF225P (Na+-site mutant) showed little response to Na+ and FVIIaE80V (Ca2+-site mutant) showed no response to Ca2+ in hydrolyzing S-2288. These data indicate that the Na+ and Ca2+ effects observed are due to the occupancy of the protease domain Na+ and Ca2+ sites. Consistent with the Km data, Na+ had no effect on the binding of p-aminobenzamidine (pAB, S1 site probe) to FVIIaWT. Interestingly, Ca2+ decreased the Ki for pAB binding by ~5-fold indicating that the increase in Km for S-2288 caused by Ca2+ is not related to the S1 site but rather to the S2 and/or S3/S4 sites in FVIIa. In further studies, Zn2+ inhibited the potentiation of S-2288 hydrolysis by FVIIaWT with Ki ~1 of μM in the absence and ~30 μM in the presence of Ca2+. We conclude that the Na+-site in FVIIa is not linked to the synthetic substrate binding site(s), and that the Ca2+-site is linked to the substrate binding site(s). These observations are in contrast to what has been previously observed for FXa and activated protein C. Thus, in the absence of TF, Na+ and Ca2+ are positive regulators for catalysis by FVIIa; whereas, Zn2+ exerts a negative effect. Conceivably, occupancy of the Na+-site and the protease domain Ca2+-site may render FVIIa in a conformation suitable for TF binding and substrate hydrolysis. The local Zn2+ concentration following release by activated platelets at the site of hemostasis could dampen coagulation as a regulatory mechanism.


Weed Science ◽  
2007 ◽  
Vol 55 (6) ◽  
pp. 558-565 ◽  
Author(s):  
Jamshid Ashigh ◽  
François J. Tardif

Twelve populations of eastern black nightshade from different locations in Ontario are resistant to imazethapyr. This study aimed at determining the molecular basis of resistance in these populations and the activity of the resistant acetohydroxyacid synthase (AHAS) enzyme compared to that of the sensitive AHAS in response to different herbicides and branched-chain amino acid concentration. The results of partialAHASsequencing indicated that all resistant populations had a cytosine331to thymine substitution coding for an alanine205to valine substitution.In vitroAHAS enzyme assays of one resistant population showed that the specific activity of the resistant enzyme was 56% less than that of the susceptible enzyme. AHAS from the resistant population was 72-, 70-, and 64-fold less sensitive than that of the susceptible population to imazethapyr, imazamox, and primisulfuron, respectively. Furthermore, the resistant enzyme was less sensitive to feedback inhibition from branched-chain amino acids compared to the susceptible enzyme. Results confirmed that resistance in resistant populations of eastern black nightshade was conferred by target-site modification and that the Ala205Val substitution alters the kinetics and regulation of branched-chain amino acid biosynthesis.


2012 ◽  
Vol 57 (3) ◽  
pp. 1513-1517 ◽  
Author(s):  
Jason F. Kreisberg ◽  
Nicholas T. Ong ◽  
Aishwarya Krishna ◽  
Thomas L. Joseph ◽  
Jing Wang ◽  
...  

ABSTRACTEmerging resistance to current antibiotics raises the need for new microbial drug targets. We show that targeting branched-chain amino acid (BCAA) biosynthesis using sulfonylurea herbicides, which inhibit the BCAA biosynthetic enzyme acetohydroxyacid synthase (AHAS), can exert bacteriostatic effects on several pathogenic bacteria, includingBurkholderia pseudomallei,Pseudomonas aeruginosa, andAcinetobacter baumannii. Our results suggest that targeting biosynthetic enzymes like AHAS, which are lacking in humans, could represent a promising antimicrobial drug strategy.


2006 ◽  
Vol 395 (2) ◽  
pp. 331-336 ◽  
Author(s):  
Yu-Ting Lee ◽  
Ronald G. Duggleby

Isoleucine, leucine and valine are synthesized via a common pathway in which the first reaction is catalysed by AHAS (acetohydroxyacid synthase; EC 2.2.1.6). This heterotetrameric enzyme is composed of a larger subunit that contains the catalytic machinery and a smaller subunit that plays a regulatory role. The RSU (regulatory subunit) enhances the activity of the CSU (catalytic subunit) and mediates end-product inhibition by one or more of the branched-chain amino acids, usually valine. Fungal AHAS differs from that in other organisms in that the inhibition by valine is reversed by MgATP. The fungal AHAS RSU also differs from that in other organisms in that it contains a sequence insert. We suggest that this insert may form the MgATP-binding site and we have tested this hypothesis by mutating ten highly conserved amino acid residues of the yeast AHAS RSU. The modified subunits were tested for their ability to activate the yeast AHAS CSU, to confer sensitivity to valine inhibition and to mediate reversal of the inhibition by MgATP. All but one of the mutations resulted in substantial changes in the properties of the RSU. Unexpectedly, four of them gave a protein that required MgATP in order for strong stimulation of the CSU and valine inhibition to be observed. A model to explain this result is proposed. Five of the mutations abolished MgATP activation and are suggested to constitute the binding site for this modulator.


2020 ◽  
Vol 117 (25) ◽  
pp. 14150-14157
Author(s):  
Guoqi Niu ◽  
Qi Guo ◽  
Jia Wang ◽  
Shun Zhao ◽  
Yikun He ◽  
...  

Two cytochrome P450 enzymes, CYP97A3 and CYP97C1, catalyze hydroxylations of the β- and ε-rings of α-carotene to produce lutein. Chirality is introduced at the C-3 atom of both rings, and the reactions are both pro-3R–stereospecific. We determined the crystal structures of CYP97A3 in substrate-free and complex forms with a nonnatural substrate and the structure of CYP97C1 in a detergent-bound form. The structures of CYP97A3 in different states show the substrate channel and the structure of CYP97C1 bound with octylthioglucoside confirms the binding site for the carotenoid substrate. Biochemical assays confirm that the ferredoxin-NADP+reductase (FNR)–ferredoxin pair is used as the redox partner. Details of the pro-3Rstereospecificity are revealed in the retinal-bound CYP97A3 structure. Further analysis indicates that the CYP97B clan bears similarity to the β-ring–specific CYP97A clan. Overall, our research describes the molecular basis for the last steps of lutein biosynthesis.


Sign in / Sign up

Export Citation Format

Share Document