scholarly journals Molecular Mechanisms of Herbicide Resistance

Weed Science ◽  
2015 ◽  
Vol 63 (SP1) ◽  
pp. 91-115 ◽  
Author(s):  
Christophe Délye ◽  
Arnaud Duhoux ◽  
Fanny Pernin ◽  
Chance W. Riggins ◽  
Patrick J. Tranel

Resistance to herbicides occurs in weeds as the result of evolutionary adaptation (Jasieniuk et al. 1996). Basically, two types of mechanisms are involved in resistance (Beckie and Tardif 2012; Délye 2013). Target-site resistance (TSR) is caused by changes in the tridimensional structure of the herbicide target protein that decrease herbicide binding, or by increased activity (e.g., due to increased expression or increased intrinsic activity) of the target protein. Nontarget-site resistance (NTSR) is endowed by any mechanism not belonging to TSR, e.g., reduction in herbicide uptake or translocation in the plant, or enhanced herbicide detoxification (reviewed in Délye 2013; Yuan et al. 2007).

2020 ◽  
Vol 29 (2) ◽  
pp. 79-96
Author(s):  
Sava Vrbničanin

Weed resistance to herbicides represents the acquired resistance of individuals to complete the life cycle and leave offspring in the conditions of extended exposure to the same herbicide, i.e. herbicides of the same mechanism of action to which they were sensitive at the beginning of the application. Based on the herbicide resistance mechanisms, all processes can be grouped as follows: target-site resistance, non-target-site resistance, cross-resistance and multiple-resistance. Currently, herbicide resistance has been reported in 514 cases (species x site of action) worldwide, in 262 weed species (152 dicotyledons, 110 monocotyledons). Many of those biotypes are resistant to als inhibitors, PS II inhibitors, EPSPS inhibitors and ACC-ase inhibitors. The higher degree of resistance to als inhibitors has been confirmed in the following weed species: Amaranthus retroflexus, Sorghum halepense, Ambrosia artemisiifolia and Helianthus annuus.


2020 ◽  
Vol 31 (4) ◽  
pp. 162-168
Author(s):  
Carlos A. G. Rigon ◽  
Todd A. Gaines ◽  
Anita Küpper ◽  
Franck E. Dayan

Evolution of resistance to pesticides is a problem challenging the sustainability of global food production. Resistance to herbicides is driven by the intense selection pressure imparted by synthetic herbicides on which we rely to manage weeds. Target-site resistance (TSR) mechanisms involve changes to the herbicide target protein and provide resistance only to herbicides within a single mechanism of action. Non-target site resistance (NTSR) mechanisms reduce the quantity of herbicide reaching the target site and/or modify the herbicide. NTSR mechanisms include reduced absorption and/or translocation, increased sequestration, and enhanced metabolic degradation. Of these diverse mechanisms contributing to NTSR, metabolism-based herbicide resistance represents a major threat because it can impart resistance to herbicides from varied chemical classes across any number of mechanisms of action.


Weed Science ◽  
2021 ◽  
pp. 1-25
Author(s):  
Qian Yang ◽  
Xia Yang ◽  
Zichang Zhang ◽  
Jieping Wang ◽  
Weiguo Fu ◽  
...  

Abstract Barnyardgrass (Echinochloa crus-galli) is a noxious grass weed which infests rice fields and causes huge crop yield losses. In this study, we collected twelve E. crus-galli populations from rice fields of Ningxia province in China and investigated the resistance levels to acetolactate synthase (ALS) inhibitor penoxsulam and acetyl-CoA carboxylase (ACCase) inhibitor cyhalofop-butyl. The results showed that eight populations exhibited resistance to penoxsulam and four populations evolved resistance to cyhalofop-butyl. Moreover, all of the four cyhalofop-butyl-resistant populations (NX3, NX4, NX6 and NX7) displayed multiple-herbicide-resistance (MHR) to both penoxsulam and cyhalofop-butyl. The alternative herbicides bispyribac-sodium, metamifop and fenoxaprop-P-ethyl cannot effectively control the MHR plants. To characterize the molecular mechanisms of resistance, we amplified and sequenced the target-site encoding genes in resistant and susceptible populations. Partial sequences of three ALS genes and six ACCase genes were examined. A Trp-574-Leu mutation was detected in EcALS1 and EcALS3 in two high-level (65.84- and 59.30-fold) penoxsulam-resistant populations NX2 and NX10, respectively. In addition, one copy (EcACC4) of ACCase genes encodes a truncated aberrant protein due to a frameshift mutation in E. crus-galli populations. None of amino acid substitutions that are known to confer herbicide resistance were detected in ALS and ACCase genes of MHR populations. Our study reveals the widespread of multiple-herbicide resistant E. crus-galli populations at Ningxia province of China that exhibit resistance to several ALS and ACCase inhibitors. Non-target-site based mechanisms are likely to be involved in E. crus-galli resistance to the herbicides, at least in four MHR populations.


Weed Science ◽  
2010 ◽  
Vol 58 (2) ◽  
pp. 109-117 ◽  
Author(s):  
Joshua S. Yuan ◽  
Laura L. G. Abercrombie ◽  
Yongwei Cao ◽  
Matthew D. Halfhill ◽  
Xin Zhou ◽  
...  

The evolution of glyphosate resistance in weedy species places an environmentally benign herbicide in peril. The first report of a dicot plant with evolved glyphosate resistance was horseweed, which occurred in 2001. Since then, several species have evolved glyphosate resistance and genomic information about nontarget resistance mechanisms in any of them ranges from none to little. Here, we report a study combining iGentifier transcriptome analysis, cDNA sequencing, and a heterologous microarray analysis to explore potential molecular and transcriptomic mechanisms of nontarget glyphosate resistance of horseweed. The results indicate that similar molecular mechanisms might exist for nontarget herbicide resistance across multiple resistant plants from different locations, even though resistance among these resistant plants likely evolved independently and available evidence suggests resistance has evolved at least four separate times. In addition, both the microarray and sequence analyses identified non–target-site resistance candidate genes for follow-on functional genomics analysis.


Weed Science ◽  
2019 ◽  
Vol 67 (6) ◽  
pp. 622-632 ◽  
Author(s):  
Christopher E. Rouse ◽  
Nilda Roma-Burgos ◽  
Bianca Assis Barbosa Martins

AbstractHerbicide-resistant Echinochloa species are among the most problematic weeds in agricultural crops globally. Recurring herbicide selection pressure in the absence of diverse management practices has resulted in greater than 20% of sampled Echinochloa populations from rice (Oryza sativa L.) fields demonstrating multiple resistance to herbicides in Arkansas, USA. We assessed the resistance profile and potential mechanisms of resistance in a multiple herbicide–resistant junglerice [Echinochloa colona (L.) Link] (ECO-R) population. Whole-plant and laboratory bioassays were conducted to identify the potential mechanisms of non–target site resistance in this population. ECO-R was highly resistant to propanil (>37,800 g ha−1) and quinclorac (>17,920 g ha−1) and had elevated tolerance to cyhalofop (R/S = 1.9) and glufosinate (R/S = 1.2) compared to the susceptible standard. The addition of glufosinate (590 g ha−1) to cyhalofop (314 g ha−1), propanil (4,500 g ha−1), or quinclorac (560 g ha−1) controlled ECO-R 100%. However, cyhalofop applied with propanil (48% control) or quinclorac (15% control) was antagonistic. The application of the known metabolic enzyme inhibitors malathion, carbaryl, and piperonyl butoxide increased control of ECO-R with propanil (>75%) but not with other herbicides. Neither absorption nor translocation of [14C]cyhalofop or propanil was different between ECO-R and ECO-S. [14C]Quinclorac absorption was also similar between ECO-R and ECO-S; however, translocation of quinclorac into tissues above the treated leaf of ECO-R was >20% higher than that in ECO-S. The abundance of metabolites was higher (∼10%) in the treated leaves of ECO-R than in ECO-S beginning 48 h after treatment. The activity of β-cyanoalanine synthase, which detoxifies hydrogen cyanide, was not different between ECO-R and ECO-S following quinclorac treatment. Resistance to propanil was due to herbicide detoxification by metabolic enzymes. Resistance to quinclorac was due to a detoxification mechanism yet to be understood. The reduction in sensitivity to cyhalofop and glufosinate might be a secondary effect of the mechanisms conferring high resistance to propanil and quinclorac.


Weed Research ◽  
2015 ◽  
Vol 55 (3) ◽  
pp. 298-308 ◽  
Author(s):  
M Rosenhauer ◽  
F G Felsenstein ◽  
H-P Piepho ◽  
M Höfer ◽  
J Petersen

2021 ◽  
Author(s):  
Sonja Kersten ◽  
Jiyang Chang ◽  
Christian D Huber ◽  
Yoav Voichek ◽  
Christa Lanz ◽  
...  

Repeated herbicide applications exert enormous selection on blackgrass (Alopecurus myosuroides), a major weed in cereal crops of the temperate climate zone including Europe. This inadvertent large-scale experiment gives us the opportunity to look into the underlying genetic mechanisms and evolutionary processes of rapid adaptation, which can occur both through mutations in the direct targets of herbicides and through changes in other, often metabolic, pathways, known as non-target-site resistance. How much either type of adaptation relies on de novo mutations versus pre-existing standing variation is important for developing strategies to manage herbicide resistance. We generated a chromosome-level reference genome for A. myosuroides for population genomic studies of herbicide resistance and genome-wide diversity across Europe in this species. Bulked-segregant analysis evidenced that non-target-site resistance has a complex genetic architecture. Through empirical data and simulations, we showed that, despite its simple genetics, target-site resistance mainly results from standing genetic variation, with only a minor role for de novo mutations.


Agronomy ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 874
Author(s):  
Marta Stankiewicz-Kosyl ◽  
Agnieszka Synowiec ◽  
Małgorzata Haliniarz ◽  
Anna Wenda-Piesik ◽  
Krzysztof Domaradzki ◽  
...  

Corn poppy (Papaver rhoeas L.) and cornflower (Centaurea cyanus L.) are two overwintering weed species found in crop fields in Europe. They are characterised by a similar life cycle, similar competitive efforts, and a spectrum of herbicides recommended for their control. This review summarises the biology and herbicide resistance phenomena of corn poppy and cornflower in Europe. Corn poppy is one of the most dangerous dicotyledonous weeds, having developed herbicide resistance to acetolactate synthase inhibitors and growth regulators, especially in Mediterranean countries and Great Britain. Target site resistance to acetolactate synthase inhibitors dominates among herbicide-resistant poppy biotypes. The importance of non-target site resistance to acetolactate synthase inhibitors in this species may be underestimated because non-target site resistance is very often associated with target site resistance. Cornflower, meanwhile, is increasingly rare in European agricultural landscapes, with acetolactate synthase inhibitors-resistant biotypes only listed in Poland. However, the mechanisms of cornflower herbicide resistance are not well recognised. Currently, herbicides mainly from acetolactate synthase and photosystem II inhibitors as well as from synthetic auxins groups are recommended for the control of both weeds. Integrated methods of management of both weeds, especially herbicide-resistant biotypes, continue to be underrepresented.


2020 ◽  
Author(s):  
J.M. Kreiner ◽  
P.J. Tranel ◽  
D. Weigel ◽  
J.R. Stinchcombe ◽  
S.I. Wright

AbstractAlthough much of what we know about the genetic basis of herbicide resistance has come from detailed investigations of monogenic adaptation at known target-sites, the importance of polygenic resistance has been increasingly recognized. Despite this, little work has been done to characterize the genomic basis of herbicide resistance, including the number and distribution of involved genes, their effect sizes, allele frequencies, and signatures of selection. Here we implement genome-wide association (GWA) and population genomic approaches to examine the genetic architecture of glyphosate resistance in the problematic agricultural weed, Amaranthus tuberculatus. GWA correctly identifies the gene targeted by glyphosate, and additionally finds more than 100 genes across all 16 chromosomes associated with resistance. The encoded proteins have relevant non-target-site resistance and stress-related functions, with potential for pleiotropic roles in resistance to other herbicides and diverse life history traits. Resistance-related alleles are enriched for large effects and intermediate frequencies, implying that strong selection has shaped the genetic architecture of resistance despite potential pleiotropic costs. The range of common and rare allele involvement implies a partially shared genetic basis of non-target-site resistance across populations, complemented by population-specific alleles. Resistance-related alleles show evidence of balancing selection, and suggest a long-term maintenance of standing variation at stress-response loci that have implications for plant performance under herbicide pressure. By our estimates, genome-wide SNPs explain a comparable amount of the total variation in glyphosate resistance to monogenic mechanisms, indicating the potential for an underappreciated polygenic contribution to the evolution of herbicide resistance in weed populations.


2019 ◽  
pp. 1688-1697 ◽  
Author(s):  
Camila Ferreira de Pinho ◽  
Jessica Ferreira Lourenço Leal ◽  
Amanda dos Santos Souza ◽  
Gabriella Francisco Pereira Borges de Oliveira ◽  
Claudia de Oliveira ◽  
...  

Herbicide resistance is the evolutionary response of weeds to the selection pressure caused by repeated application of the same active ingredient. It can result from two different mechanisms, known as target site resistance (TSR) and non-target site resistance (NTSR). In addition to single-herbicide resistance, multiple resistance can occur due to herbicides selection or accumulation of resistance genes by cross-pollination. The aim of this research was to investigate the suspect of multiple herbicide resistance of Sumatran Fleabane (Conyza sumatrensis (Retz.) E.Walker) to herbicides frequently used as a burndown application. Dose-responses in a whole-plant assay were carried out to investigate multiple-resistance of Sumatran fleabane to paraquat, saflufenacil, diuron, 2,4-D and glyphosate. Results indicated that the resistance index (ratio R/S) based on herbicide rate to cause 50% mortality (LD50) were 25.51, 1.39, 7.29, 1.84 and 7.55 for paraquat, saflufenacil, diuron, 2,4-D and glyphosate, respectively. Based on herbicide rate required to cause a 50% reduction in plant growth (GR50), the resistant index were 51.83, 14.10, 5.05, 3.96 and 32.90 for the same herbicides, respectively. Our results confirmed multiple resistance of Conyza sumatrensis from Paraná-Brazil to herbicides from five-mode of-action. This was the first report of Conyza sumatrensis resistant to 2,4-D and the first case of Conyza sumatrensis presenting multiple resistant to herbicides from five- mode of-action in the world.


Sign in / Sign up

Export Citation Format

Share Document