concentration potential
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 12)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Patricia Batista-Grau ◽  
Rita Sánchez-Tovar ◽  
Ramón M. Fernández-Domene ◽  
José García-Antón

Abstract Solar energy is a clean and abundant energy source. In a photoelectrochemical cell, energy from sunlight is captured and converted into electric power, chemical fuels such as hydrogen is employed to degrade organic pollutants. ZnO is a promising material for photoelectrocatalysis due to its remarkable properties. The aim of this review is to perform an exhaustive revision of nanostructured ZnO synthesis by electrochemical anodization in order to control surface characteristics of this material through anodization parameters such as electrolyte type and concentration, potential, time, temperature, stirring, and post treatment. Finally, application of ZnO nanostructures is overviewed to observe how surface characteristics affected the ZnO photoelectrocatalytic performance.


Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 626
Author(s):  
Alexander Rudolph ◽  
Amna El-Mohamad ◽  
Christopher McHardy ◽  
Cornelia Rauh

Fruits have an important economic impact in the context of plant-based food production. The consumption of fruit juices, mostly produced from concentrates, is particularly noteworthy. Conventional concentration methods do not always enable a sustainable and gentle concentration. The innovative gas hydrate technology addresses this point with its energy-saving, gentle character, and high concentration potential. In this study, the concentration of fruit juices and model solutions using CO2 hydrate technology was investigated. To find a suitable operating point for hydrate formation in the used bubble column, the hydrate formation in a water–sucrose model solution was evaluated at different pressure and temperature combinations (1, 3, 5 °C and 32.5, 37.5, 40 bar). The degrees of concentration indicate that the bubble column reactor operates best at 37.5 bar and 3 °C. To investigate the gentle processing character of the hydrate technology, its quantitative effects on vitamin C, betanin, polyphenols, and carotenoids were analyzed in the produced concentrates and hydrates via HPLC and UV/VIS spectrophotometry. The results for fruit juices and model solutions imply that all examined substances are accumulated in the concentrate, while only small amounts remain in the hydrate. These amounts can be related to an inefficient separation process.


2020 ◽  
Vol 71 (8) ◽  
pp. 148-158
Author(s):  
Kamisah D. Pandiangan ◽  
Wasinton Simanjuntak ◽  
R. Supriyanto ◽  
Ilim Ilim ◽  
Ponco Prasetyo ◽  
...  

This study was conducted to explore the production of magnesium oxide from raw salt solution using electrochemical precipitation, followed by calcination. Electrochemical precipitation was conducted by electrolysis of the salt solution using nickel rods as cathodes and graphite as anodes. Two sets of salt solutions were prepared: one set without pretreatment and another with BaCl2 pretreatment. The solutions were used to study the effect of salt concentration, potential, and electrolysis time. The representatives of the MgO produced were tested as catalysts for transesterification of coconut oil. The results indicate that optimum mass of precipitate was produced from 400 mg/L salt solution electrolyzed using 8 V for 60 min. Elemental analysis using X-Ray Fluorescence (XRF) revealed the presence of Mg as the main component of the precipitate, confirming the electrochemical conversion of Mg2+ into solid Mg(OH)2. The MgO with the purity of 74.23% and 88.87% was produced from non-pretreated and pretreated salt solution, respectively. The transesterification experiments indicate that the yield of 90% and 98% was achieved using the MgO produced from non-pretreated and pretreated salt solution, respectively.


2020 ◽  
Vol 173 ◽  
pp. 108951
Author(s):  
Joaquim Kessongo ◽  
Yoenls Bahu ◽  
Margarida Inácio ◽  
Luis Peralta ◽  
Sandra Soares

2020 ◽  
Author(s):  
Ian Seymour ◽  
Benjamin O'sullivan ◽  
Pierre Lovera ◽  
Alan O'Riordan ◽  
James Rohan

Disinfection by chloramination of water systems is an alternative to chlorination that is frequently used in North America. In such a case, monochloramine is used as the primary source of chlorine for disinfection. Regular monitoring of the residual concentrations of this species is crucial to ensure adequate disinfection. An amperometric sensor for monochloramine would provide fast, reagent free analysis, however the presence of dissolved oxygen in water complicates sensor development. In this work, we have explored the use of in-situ pH control as a method of eliminating oxygen as an interferent by conversion of monochloramine to dichloramine. The electrochemical reduction of dichloramine occurs outside the oxygen reduction window and is therefore not affected by oxygen concentration. Potential sweep methods were used to investigate the conversion of monochloramine to dichloramine at pH 3. The pH control method was used to calibrate monochloramine concentrations between 1 and 10 ppm, with a detection limit of 0.03 ppm. Tests were carried out in high alkalinity samples, wherein it was found that the sensitivity of this method effectively remained unchanged. Monochloramine was also quantified in the presence of common interferents (copper, phosphate and iron) which had no significant impact on the analysis


2020 ◽  
Author(s):  
Ian Seymour ◽  
Benjamin O'sullivan ◽  
Pierre Lovera ◽  
Alan O'Riordan ◽  
James Rohan

Disinfection by chloramination of water systems is an alternative to chlorination that is frequently used in North America. In such a case, monochloramine is used as the primary source of chlorine for disinfection. Regular monitoring of the residual concentrations of this species is crucial to ensure adequate disinfection. An amperometric sensor for monochloramine would provide fast, reagent free analysis, however the presence of dissolved oxygen in water complicates sensor development. In this work, we have explored the use of in-situ pH control as a method of eliminating oxygen as an interferent by conversion of monochloramine to dichloramine. The electrochemical reduction of dichloramine occurs outside the oxygen reduction window and is therefore not affected by oxygen concentration. Potential sweep methods were used to investigate the conversion of monochloramine to dichloramine at pH 3. The pH control method was used to calibrate monochloramine concentrations between 1 and 10 ppm, with a detection limit of 0.03 ppm. Tests were carried out in high alkalinity samples, wherein it was found that the sensitivity of this method effectively remained unchanged. Monochloramine was also quantified in the presence of common interferents (copper, phosphate and iron) which had no significant impact on the analysis


2020 ◽  
pp. 14-18
Author(s):  
G. Zh. Abdykirova ◽  
◽  
B. K. Kenzhaliev ◽  
A. K. Koyzhanova ◽  
D. R. Magomedov ◽  
...  

2020 ◽  
pp. 36-40
Author(s):  
A. P. Zhaboedov ◽  
◽  
M. D. Zimin ◽  
A. I. Nepomnyashchikh ◽  
A. N. Sapozhnikov ◽  
...  

Author(s):  
Nathan Philip Hilton ◽  
Nicholas Keith Leach ◽  
Melissa May Craig ◽  
S. Andy Sparks ◽  
Lars Robert McNaughton

Enteric-formulated capsules can mitigate gastrointestinal (GI) side effects following sodium bicarbonate (NaHCO3) ingestion; however, it remains unclear how encapsulation alters postingestion symptoms and acid–base balance. The current study aimed to identify the optimal ingestion form to mitigate GI distress following NaHCO3 ingestion. Trained males (n = 14) ingested 300 mg/kg body mass of NaHCO3 in gelatin (GEL), delayed-release (DEL), and enteric-coated (ENT) capsules or a placebo in a randomized cross-over design. Blood bicarbonate anion concentration, potential hydrogen, and GI symptoms were measured pre- and postingestion for 3 hr. Fewer GI symptoms were reported with ENT NaHCO3 than with GEL (p = .012), but not with DEL (p = .106) in the postingestion phase. Symptom severity decreased with DEL (4.6 ± 2.8 arbitrary units) compared with GEL (7.0 ± 2.6 arbitrary units; p = .001) and was lower with ENT (2.8 ± 1.9 arbitrary units) compared with both GEL (p < .0005) and DEL (p = .044) NaHCO3. Blood bicarbonate anion concentration increased in all NaHCO3 conditions compared with the placebo (p < .0005), although this was lower with ENT than with GEL (p = .001) and DEL (p < .0005) NaHCO3. Changes in blood potential hydrogen were reduced with ENT compared with GEL (p = .047) and DEL (p = .047) NaHCO3, with no other differences between the conditions. Ingestion of ENT NaHCO3 attenuates GI disturbances for up to 3 hr postingestion. Therefore, ENT ingestion forms may be favorable for those who report GI disturbances with NaHCO3 supplementation or for those who have previously been deterred from its use altogether.


Sign in / Sign up

Export Citation Format

Share Document