Uncertainty Theory Based Partitioning for Cyber-Physical Systems with Uncertain Reliability Analysis

2022 ◽  
Vol 27 (3) ◽  
pp. 1-19
Author(s):  
Si Chen ◽  
Guoqi Xie ◽  
Renfa Li ◽  
Keqin Li

Reasonable partitioning is a critical issue for cyber-physical system (CPS) design. Traditional CPS partitioning methods run in a determined context and depend on the parameter pre-estimations, but they ignore the uncertainty of parameters and hardly consider reliability. The state-of-the-art work proposed an uncertainty theory based CPS partitioning method, which includes parameter uncertainty and reliability analysis, but it only considers linear uncertainty distributions for variables and ignores the uncertainty of reliability. In this paper, we propose an uncertainty theory based CPS partitioning method with uncertain reliability analysis. We convert the uncertain objective and constraint into determined forms; such conversion methods can be applied to all forms of uncertain variables, not just for linear. By applying uncertain reliability analysis in the uncertainty model, we for the first time include the uncertainty of reliability into the CPS partitioning, where the reliability enhancement algorithm is proposed. We study the performance of the reliability obtained through uncertain reliability analysis, and experimental results show that the system reliability with uncertainty does not change significantly with the growth of task module numbers.

2015 ◽  
Vol 12 (04) ◽  
pp. 1540006 ◽  
Author(s):  
C. Jiang ◽  
J. Zheng ◽  
B. Y. Ni ◽  
X. Han

This paper proposes a probability-interval mixed uncertainty model considering parametric correlations and a corresponding structural reliability analysis method. First of all, we introduce the sample correlation coefficients to express the correlations between different kinds of uncertain variables including probability and interval variables. Then dependent parameters are transformed into independent ones through a matrix transformation. A reliability analysis model is put forward, and an efficient method is built to obtain the reliability index or failure probability interval of the structure. Finally, four numerical examples are provided to verify the validity of the method.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2589 ◽  
Author(s):  
Ye Cai ◽  
Yu Chen ◽  
Yong Li ◽  
Yijia Cao ◽  
Xiangjun Zeng

With the increasing interaction between physical devices and communication components, the substation based on the IEC 61850 standard is a type of cyber–physical system. This paper proposes a reliability analysis method for substations with a cyber–physical interface matrix (CPIM). This method calculates the influences from both the physical device failures and the communication devices failures. Two indices, Probability of Load Curtailments and Expected Demand Not Supplied, are used in the reliability analysis. Given the simplified model of the practical substation based on the Chinese IEC 61850 standard, the results show that the substation system had a potential risk of cascading failure under the cyber–physical fusion trend, as the failure in cyber layer would increase the power loss of the whole system. The changing magnitude of Expected Demand Not Supplied increased significantly with increasing transmission delay rate of the process bus.


Author(s):  
Okolie S.O. ◽  
Kuyoro S.O. ◽  
Ohwo O. B

Cyber-Physical Systems (CPS) will revolutionize how humans relate with the physical world around us. Many grand challenges await the economically vital domains of transportation, health-care, manufacturing, agriculture, energy, defence, aerospace and buildings. Exploration of these potentialities around space and time would create applications which would affect societal and economic benefit. This paper looks into the concept of emerging Cyber-Physical system, applications and security issues in sustaining development in various economic sectors; outlining a set of strategic Research and Development opportunities that should be accosted, so as to allow upgraded CPS to attain their potential and provide a wide range of societal advantages in the future.


Author(s):  
Sheng-Jia Ruan ◽  
Yan-Hui Lin

Standby redundancy can meet system safety requirements in industries with high reliability standards. To evaluate reliability of standby systems, failure dependency among components has to be considered especially when systems have load-sharing characteristics. In this paper, a reliability analysis and state transfer scheduling optimization framework is proposed for the load-sharing 1-out-of- N: G system equipped with M warm standby components and subject to continuous degradation process. First, the system reliability function considering multiple dependent components is derived in a recursive way. Then, a Monte Carlo method is developed and the closed Newton-Cotes quadrature rule is invoked for the system reliability quantification. Besides, likelihood functions are constructed based on the measurement information to estimate the model parameters of both active and standby components, whose degradation paths are modeled by the step-wise drifted Wiener processes. Finally, the system state transfer scheduling is optimized by the genetic algorithm to maximize the system reliability at mission time. The proposed methodology and its effectiveness are illustrated through a case study referring to a simplified aircraft hydraulic system.


Sign in / Sign up

Export Citation Format

Share Document