scholarly journals Series Arc Fault Identification Method Based on Multi-Feature Fusion

2022 ◽  
Vol 9 ◽  
Author(s):  
Quanyi Gong ◽  
Ke Peng ◽  
Wei Wang ◽  
Bingyin Xu ◽  
Xinhui Zhang ◽  
...  

With the increase of various loads connected to the low-voltage distribution system, the difficulty of identifying low-voltage series fault arcs has greatly increased, which seriously threatens the electricity safety. Aiming at such problems, a neural network algorithm based on multi-feature fusion is proposed. The fault current has the characteristics of randomness, high frequency noise, and singularity. A GA-BP neural network model is built, and the wavelet analysis method (based on singularity), Fourier transform method (based on high frequency noise), current cycle difference method (based on randomness), and current cycle similarity derivation method (based on randomness) are used for feature extraction and can more comprehensively reflect the characteristics of arc faults. Simulation results show that the multi-feature fusion algorithm has a higher recognition rate than other algorithms. Moreover, compared with the support vector machine model, logistic regression model, and AlexNet model, the GA-BP neural network model has a higher recognition accuracy than the other three models, which can reach 99%.

Forests ◽  
2018 ◽  
Vol 10 (1) ◽  
pp. 16 ◽  
Author(s):  
Haojie Chai ◽  
Xianming Chen ◽  
Yingchun Cai ◽  
Jingyao Zhao

The moisture content (MC) control is vital in the wood drying process. The study was based on BP (Back Propagation) neural network algorithm to predict the change of wood MC during the drying process of a high frequency vacuum. The data of real-time online measurement were used to construct the model, the drying time, position of measuring point, and internal temperature and pressure of wood as inputs of BP neural network model. The model structure was 4-6-1 and the decision coefficient R2 and Mean squared error (Mse) of the training sample were 0.974 and 0.07355, respectively, indicating that the neural network model had superb generalization ability. Compared with the experimental measurements, the predicted values conformed to the variation law and size of experimental values, and the error was about 2% and the MC prediction error of measurement points along thickness direction was within 2%. Hence, the BP neural network model could successfully simulate and predict the change of wood MC during the high frequency drying process.


2016 ◽  
Vol 6 (2) ◽  
pp. 942-952
Author(s):  
Xicun ZHU ◽  
Zhuoyuan WANG ◽  
Lulu GAO ◽  
Gengxing ZHAO ◽  
Ling WANG

The objective of the paper is to explore the best phenophase for estimating the nitrogen contents of apple leaves, to establish the best estimation model of the hyperspectral data at different phenophases. It is to improve the apple trees precise fertilization and production management. The experiments were done in 20 orchards in the field, measured hyperspectral data and nitrogen contents of apple leaves at three phenophases in two years, which were shoot growth phenophase, spring shoots pause growth phenophase, autumn shoots pause growth phenophase. The study analyzed the nitrogen contents of apple leaves with its original spectral and first derivative, screened sensitive wavelengths of each phenophase. The hyperspectral parameters were built with the sensitive wavelengths. Multiple stepwise regressions, partial least squares and BP neural network model were adopted in the study. The results showed that 551 nm, 716 nm, 530 nm, 703 nm; 543 nm, 705 nm, 699 nm, 756 nm and 545 nm, 702 nm, 695 nm, 746 nm were sensitive wavelengths of three phenophases. R551+R716, R551*R716, FDR530+FDR703, FDR530*FDR703; R543+R705, R543*R705, FDR699+FDR756, FDR699*FDR756and R545+R702, R545*R702, FDR695+FDR746, FDR695*FDR746 were the best hyperspectral parameters of each phenophase. Of all the estimation models, the estimated effect of shoot growth phenophase was better than other two phenophases, so shoot growth phenophase was the best phenophase to estimate the nitrogen contents of apple leaves based on hyperspectral models. In the three models, the 4-3-1 BP neural network model of shoot growth phenophase was the best estimation model. The R2 of estimated value and measured value was 0.6307, RE% was 23.37, RMSE was 0.6274.


Author(s):  
Lijuan Huang ◽  
Guojie Xie ◽  
Wende Zhao ◽  
Yan Gu ◽  
Yi Huang

AbstractWith the rapid development of e-commerce, the backlog of distribution orders, insufficient logistics capacity and other issues are becoming more and more serious. It is very significant for e-commerce platforms and logistics enterprises to clarify the demand of logistics. To meet this need, a forecasting indicator system of Guangdong logistics demand was constructed from the perspective of e-commerce. The GM (1, 1) model and Back Propagation (BP) neural network model were used to simulate and forecast the logistics demand of Guangdong province from 2000 to 2019. The results show that the Guangdong logistics demand forecasting indicator system has good applicability. Compared with the GM (1, 1) model, the BP neural network model has smaller prediction error and more stable prediction results. Based on the results of the study, it is the recommendation of the authors that e-commerce platforms and logistics enterprises should pay attention to the prediction of regional logistics demand, choose scientific forecasting methods, and encourage the implementation of new distribution modes.


2010 ◽  
Vol 34-35 ◽  
pp. 301-305
Author(s):  
Zhao Qian Zhu ◽  
Jue Yang ◽  
Xiao Ming Zhang ◽  
Xiao Lei Li

This paper studied misfire diagnosis of diesel engine based on short-time vibration characters. Misfire of diesel engine was simulated by the vibration monitoring test. Cylinder vibration signal and top center signal were collected under different states. The short-time vibration signal of each cylinder was intercepted according to the diesel combustion sequence, effective value was calculated, and BP Neural Network model built with this character was used to diagnose diesel misfire. The result shows that this method can locate the misfire cylinder effectively, and it is meaningful for guiding the detection and repair of vehicles.


2014 ◽  
Vol 1003 ◽  
pp. 226-229 ◽  
Author(s):  
Ying Hong Xie ◽  
Xiao Wei Han ◽  
Qi Li

In this paper, BP neural network model is used to establish the occurrence and evolution model of PM2.5 in an area in Xi'an city. In the model, wind, humidity, season, SO2,NO2,PM10, CO,O3 (in one hour ) and O3 (in eight hours ) and other influence factors are all considered. The model has good reliability, it can accurately forecast the value of PM2.5 and its variation in the near future, which can provide the basis for the PM2.5 control.


2021 ◽  
Vol 336 ◽  
pp. 06011
Author(s):  
Haonan Dong ◽  
Ruili Jiao ◽  
Minsong Huang

In order to solve the problem that the shape of cloud particle images measured by airborne cloud imaging probe (CIP) cannot be automatically recognized, this paper proposes an automatic recognition method of cloud and precipitation particle shape based on BP neural network. This method mainly uses a set of geometric parameters which can better describe the shape characteristics of cloud precipitation particles. Based on the cloud precipitation particle images measured by CIP in the precipitation stratiform clouds in northern China, a particle shape data training set and a testing set were constructed to train and verify the effect of the selected BP neural network model. The selected BP neural network model can classify the cloud particle image into tiny, column, needle, dendrite, aggregate, graupel, sphere, hexagonal and irregular. Utilizing the field campaign data measured by CIP, the habit identified results by the improved Holroyd method and by the selected BP neural network model were compared, which shows that the accuracy of BP neural network method is better than that of improved Holroyd method.


2017 ◽  
Vol 19 (2) ◽  
pp. 878-893 ◽  
Author(s):  
Xianming Chen ◽  
Tieliu Wang ◽  
Mingming Ding ◽  
Jing Wang ◽  
Jianqing Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document