narrow spectral band
Recently Published Documents


TOTAL DOCUMENTS

13
(FIVE YEARS 3)

H-INDEX

4
(FIVE YEARS 2)

APL Photonics ◽  
2020 ◽  
Vol 5 (4) ◽  
pp. 046104 ◽  
Author(s):  
Xin He ◽  
Yajing Liu ◽  
Kumar Ganesan ◽  
Arman Ahnood ◽  
Paul Beckett ◽  
...  

2019 ◽  
Vol 64 (11) ◽  
pp. 1009 ◽  
Author(s):  
Yu. V. Shtanov ◽  
M. V. Pavliuk

We describe a simple scenario of inflationary magnetogenesis based on a helical coupling to electromagnetism. It allows the generation of helical magnetic fields with strength of order up to 10−7 Gs, when extrapolated to the current epoch, in a narrow spectral band centered at any physical wavenumber after the adjustment of model parameters. The additional constraints on magnetic fields arise from the considerations of baryogenesis and, possibly, from the Schwinger effect of the creation of charged particle-antiparticle pairs.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Young Min Bae ◽  
Dong-Goo Kang ◽  
Ki Young Shin ◽  
Wonju Lee ◽  
Dong-Wook Yoo

Quantum dot (QD) is a kind of semiconductor nanoparticle and shows photoluminescence, in which the light with narrow spectral band is emitted from the QD after the absorption of the excitation light. In this study, it is demonstrated that the LED-based light source combined with a QD film can be applied to spectral imaging. The polymer film with QD was prepared by photopolymerization. Through measurement of the emission spectrum, it was confirmed that the optical intensity at the peak wavelength of the spectral bands of 410 and 540 nm could be controlled by changing the thickness of the film. In the study using a home-made phantom mimicking blood vessels, the patterns’ contrast in the phantom images could be enhanced by using LED combined with QD as compared with the white light image. The LED light combined with the QD film provides a useful solution for illumination for spectral imaging.


2017 ◽  
Vol 46 (7) ◽  
pp. 704001
Author(s):  
蔡红华 Cai Honghua ◽  
聂万胜 Nie Wansheng ◽  
吴 睿 Wu Rui ◽  
苏凌宇 Su Lingyu ◽  
侯志勇 Hou Zhiyong

2006 ◽  
Vol 14 (1) ◽  
Author(s):  
H. Zogg ◽  
M. Arnold

AbstractNarrow spectral band infrared detectors are required for multispectral infrared imaging. Wavelength selectivity can be obtained by placing passive line filters in front of the detectors, or, the preferred choice, by making the detectors themselves wavelength selective. We review the first photovoltaic resonant cavity enhanced detectors (RCED) for the mid-IR range. The lead-chalcogenide (PbEuSe) photodetector is placed as a very thin layer inside an optical cavity. At least one side is terminated with an epitaxial Brugg mirror (consisting of quarter wavelength PbEuSe/BaF2 pairs), while the second mirror may be a metal. Linewidths are as narrow as 37 nm at a peak wavelength of 4400 nm, and peak quantum efficiencies up to above 50% are obtained.


1993 ◽  
Vol 180 (1) ◽  
pp. 119-152 ◽  
Author(s):  
M. K. Obrist ◽  
M. B. Fenton ◽  
J. L. Eger ◽  
P. A. Schlegel

Using a moveable loudspeaker and an implanted microphone, we studied the sound pressure transformation of the external ears of 47 species of bats from 13 families. We compared pinna gain, directionality of hearing and interaural intensity differences (IID) in echolocating and non-echolocating bats, in species using different echolocation strategies and in species that depend upon prey-generated sounds to locate their targets. In the Pteropodidae, two echolocating species had slightly higher directionality than a non-echolocating species. The ears of phyllostomid and vespertilionid species showed moderate directionality. In the Mormoopidae, the ear directionality of Pteronotus parnellii clearly matched the dominant spectral component of its echolocation calls, unlike the situation in three other species. Species in the Emballonuridae, Molossidae, Rhinopomatidae and two vespertilionids that use narrow-band search-phase echolocation calls showed increasingly sharp tuning of the pinna to the main frequency of their signals. Similar tuning was most evident in Hipposideridae and Rhinolophidae, species specialized for flutter detection via Doppler-shifted echoes of high-duty-cycle narrow-band signals. The large pinnae of bats that use prey-generated sounds to find their targets supply high sound pressure gain at lower frequencies. Increasing domination of a narrow spectral band in echolocation is reflected in the passive acoustic properties of the external ears (sharper directionality). The importance of IIDs for lateralization and horizontal localization is discussed by comparing the behavioural directional performance of bats with their bioacoustical features.


Sign in / Sign up

Export Citation Format

Share Document