kidney cyst
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 19)

H-INDEX

11
(FIVE YEARS 3)

Author(s):  
Muhammad Iqbal ◽  
Santi Syafril

Background.Brown tumor of Hyperparathyroidism is a metabolic disorder that can affect the entire skeleton and reactive process due to bone resorption caused by primary or secondary hyperparathyroidism (HPT). Brown tumors can occur as solitary or multiple lesions in any bone, most often in the pelvis, ribs, clavicle, mandibula, and extremities. Here, we report the Brown tumor in the lower right limb in patients with primary HPT, and the literature is reviewed. Case presentation. Patients was women 30 years old had married and come with main complains of difficulty walking. This condition has been experienced by patients since diagnosis with lunb of tibia last 8 months and caused pain from hip to lower leg.  On laboratory results, it showed elevated PTH 1.249 (normal 15-65) pg/dL, elevated phosphatase alkali 1156 (normal 40-150) u/dL, elevated Ca 10,8 (n:8,6 -10,3) mg/dL, phosphor 2,1 (3–4,5) mg/dL. Histology examination of tibia lump was a benign lesion of bone (Brown Tumor). Ultrasonography transabdominal result revealed kidney stones with bilateral renal pelvis dilation, nephrolithiasis non-obstructive was found with size 1 cm & left kidney cyst with size 0.6 cm. On Neck USG showed giant cyst lesion on parathyroid glands. Radiologist pelvic examination results showed bone metastasis disease. Head CT Scan examination concluded as suspect metastatic bone. Body bone scans examination showed pathological bone metastatic process. Conclusion. Brown tumor in right lower limb caused by primary HPT


NEJM Evidence ◽  
2021 ◽  
Author(s):  
Gopala K. Rangan ◽  
Annette T.Y. Wong ◽  
Alexandra Munt ◽  
Jennifer Q.J. Zhang ◽  
Sayanthooran Saravanabavan ◽  
...  

In patients with autosomal dominant polycystic kidney disease (ADPKD), drinking more water could potentially reduce urine osmolality and suppress arginine vasopressin release and decrease the rate of kidney cyst growth and its associated organ dysfunction. In a 3-year trial, adults with ADPKD randomized to drink more water so as to lower urine osmolality did not have slower kidney growth than did a group who drank water as they wished.


2021 ◽  
pp. ASN.2021050690
Author(s):  
Zhengmao Zhang ◽  
Hanwen Bai ◽  
Jon Blumenfeld ◽  
Andrew Ramnauth ◽  
Irina Barash ◽  
...  

Background: Autosomal dominant polycystic kidney disease (ADPKD) is a genetic disorder characterized by the development of multiple cysts in the kidneys. It is often caused by pathogenic mutations in PKD1 and PKD2 genes that encode polycystin proteins. Although the molecular mechanisms for cystogenesis are not established, concurrent inactivating germline and somatic mutations in PKD1 and PKD2 have been previously observed in renal tubular epithelium (RTE). Methods: To further investigate the cellular recessive mechanism of cystogenesis in RTE, we conducted whole-genome DNA sequencing analysis to identify germline variants and somatic alterations in RTE of 90 unique kidney cysts obtained during nephrectomy from 24 unrelated participants. Results: Kidney cysts were overall genomically stable, with low burdens of somatic short mutations or large-scale structural alterations. Pathogenic somatic "second hit" alterations disrupting PKD1 or PKD2 were identified in 93% of the cysts. Of these, 77% of cysts acquired short mutations in PKD1 or PKD2; specifically, 60% resulted in protein truncations (nonsense, frameshift, or splice site) and 16.7% caused non-truncating mutations (missense, in-frame insertions, or deletions). Another ~18% of cysts acquired somatic chromosomal loss of heterozygosity (LOH) events encompassing PKD1 or PKD2 ranging from 2.6 to 81.3 Mb. 14.4% of these cysts harbored copy number neutral LOH events, while the other 3.3% had hemizygous chromosomal deletions. LOH events frequently occurred at chromosomal fragile sites, or in regions comprising chromosome microdeletion diseases/syndromes. Almost all somatic "second hit" alterations occurred at the same germline mutated PKD1/2 gene. Conclusions: These findings further support a cellular recessive mechanism for cystogenesis in ADPKD primarily caused by inactivating germline and somatic variants of PKD1 or PKD2 genes in kidney cyst epithelium.


2021 ◽  
Vol 8 (11) ◽  
pp. 144
Author(s):  
Priyanka S. Sagar ◽  
Sayanthooran Saravanabavan ◽  
Alexandra Munt ◽  
Annette T. Y. Wong ◽  
Gopala K. Rangan

Vitamin D secosteroids are intranuclear regulators of cellular growth and suppress the renin-angiotensin system. The aim of this study was to test the hypothesis that the vitamin D receptor agonist, paricalcitol (PC), either alone or with enalapril (E) (an angiotensin-converting enzyme inhibitor), reduces the progression of polycystic kidney disease. Preventative treatment of Lewis polycystic kidney (LPK) and Lewis control rats with PC (0.2 μg/kg i.p. 5 days/week) or vehicle from postnatal weeks 3 to 10 did not alter kidney enlargement. To evaluate the efficacy in established disease, LPK rats received either PC (0.8 μg/kg i.p; 3 days/week), vehicle, E (50 mg/L in water) or the combination of PC + E from weeks 10 to 20. In established disease, PC also did not alter the progression of kidney enlargement, kidney cyst growth or decline in renal function in LPK rats. Moreover, the higher dose of PC was associated with increased serum calcium and weight loss. However, in established disease, the combination of PC + E reduced systolic blood pressure and heart-body weight ratio compared to vehicle and E alone (p < 0.05). In conclusion, the combination of PC + E attenuated cardiovascular disease but caused hypercalcaemia and did not alter kidney cyst growth in LPK rats.


2021 ◽  
Vol 3 (2) ◽  
pp. 48-50
Author(s):  
Alexee V. Baranov ◽  
Dmitriy N. Panchenkov ◽  
Marina E. Behteva ◽  
Basil N. Shirshov

We describe the first clinical experience of laparoscopic surgery for renal cyst by a single access. Advantages, disadvantages and prospects of this method are analized.


2021 ◽  
Vol 22 (19) ◽  
pp. 10512
Author(s):  
Ashley N. Chandra ◽  
Sayanthooran Saravanabavan ◽  
Gopala K. Rangan

DNA-dependent protein kinase (DNA-PK) is a serine/threonine protein involved in DNA damage response (DDR) signaling that may mediate kidney cyst growth in autosomal dominant polycystic kidney disease (ADPKD) due to its pleiotropic effects on proliferation and survival. To test this hypothesis, the expression of DNA-PK in human ADPKD and the in vitro effects of DNA-PK inhibition in a three-dimensional model of Madin-Darby Canine Kidney (MDCK) cyst growth and human ADPKD cells were assessed. In human ADPKD, the mRNA expression for all three subunits of the DNA-PK complex was increased, and using immunohistochemistry, the catalytic subunit (DNA-PKcs) was detected in the cyst lining epithelia of human ADPKD, in a focal manner. In vitro, NU7441 (a DNA-PK kinase inhibitor) reduced MDCK cyst growth by up to 52% after long-term treatment over 6–12 days. Although human ADPKD cell lines (WT9-7/WT9-12) did not exhibit synthetic lethality in response to DNA-PK kinase inhibition compared to normal human kidney cells (HK-2), the combination of low-dose NU7441 enhanced the anti-proliferative effects of sirolimus in WT9-7 and WT9-12 cells by 17 ± 10% and 11 ± 7%, respectively. In conclusion, these preliminary data suggest that DNA-PK mediates kidney cyst growth in vivo without a synthetically lethal interaction, conferring cell-specificity in human ADPKD cells. NU7441 enhanced the anti-proliferative effects of rapamycin complex 1 inhibitors, but the effect was modest.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 532
Author(s):  
Jennifer Q. J. Zhang ◽  
Sayanthooran Saravanabavan ◽  
Gopala K. Rangan

The DNA damage response (DDR) pathway is upregulated in autosomal dominant polycystic kidney disease (ADPKD) but its functional role is not known. The ataxia-telangiectasia mutated (ATM) and AT and Rad3-related (ATR) protein kinases are key proximal transducers of the DDR. This study hypothesized that reducing either ATM or ATR attenuates kidney cyst formation and growth in experimental ADPKD. In vitro, pharmacological ATM inhibition by AZD0156 reduced three-dimensional cyst growth in MDCK and human ADPKD cells by up to 4.4- and 4.1-fold, respectively. In contrast, the ATR inhibitor, VE-821, reduced in vitro MDCK cyst growth but caused dysplastic changes. In vivo, treatment with AZD0156 by oral gavage for 10 days reduced renal cell proliferation and increased p53 expression in Pkd1RC/RC mice (a murine genetic ortholog of ADPKD). However, the progression of cystic kidney disease in Pkd1RC/RC mice was not altered by genetic ablation of ATM from birth, in either heterozygous (Pkd1RC/RC/Atm+/−) or homozygous (Pkd1RC/RC/Atm−/−) mutant mice at 3 months. In conclusion, despite short-term effects on reducing renal cell proliferation, chronic progression was not altered by reducing ATM in vivo, suggesting that this DDR kinase is dispensable for kidney cyst formation in ADPKD.


Sign in / Sign up

Export Citation Format

Share Document