scholarly journals Ocean Acidification: Comparative Impacts on the  Photophysiology of a Temperate Symbiotic Sea Anemone and a Tropical Coral

2021 ◽  
Author(s):  
◽  
Michael Doherty

<p>Ocean acidification has the potential to drastically alter the coral reef ecosystem by reducing the calcification rate of corals and other reef-builders, and hence a considerable amount of research is now focused on this issue. It also is conceivable that acidification may affect other physiological processes of corals. In particular, acidification may alter photosynthetic physiology and hence the productivity of the coraldinoflagellate symbiosis that is pivotal to the reef's survival and growth. However, very little is known about the impacts of acidification on the photophysiology of corals or, indeed, other invertebrate-algal symbioses. This gap in our knowledge was addressed here by measuring the impacts of acidification (pH 7.6 versus pH 8.1) on the photophysiology and health of the tropical coral Stylophora pistillata and its isolated dinoflagellate symbionts ('zooxanthellae'), and the temperate sea anemone Anthopleura aureoradiata. The comparative nature of this study allowed for any differences between tropical and temperate symbioses, and zooxanthellae in a symbiotic or free-living state, to be assessed. Corals, anemones and cultured zooxanthellae were maintained in flowthrough seawater systems, and treated either with non-acidified (control) seawater at pH 8.1, or seawater acidified with CO2 or HCl to pH 7.6. A variety of parameters, including zooxanthellar density, chlorophyll content, photosynthetic health (Yi), and the ratio of gross photosynthetic production to respiration (P:R) were measured via cell counts, spectrophotometry, respirometry and PAM fluorometry, at a series of time-points up to a maximum of 42 days. Acidification generated by the addition of CO2 had no discernible effect on Yi of either the corals or anemones. However, in the coral, chlorophyll content per zooxanthella cell increased by 25%, which was countered by a near-significant decline (22%) in the rate of gross photosynthesis per unit chlorophyll; as zooxanthellar density remained unchanged, this led to a constant P:R ratio. When acidified via CO2, the isolated zooxanthellae exhibited no impacts in recorded Yi or chlorophyll levels. The response of the anemone to acidification via CO2 was different to that observed in the coral, as the density of zooxanthellae increased, rather than the chlorophyll content per cell, leading to an increased rate of gross photosynthesis. However P:R again remained constant as the increased photosynthesis was matched by an increased rate of respiration. In contrast to the impacts of CO2, HCl adversely impacted the chlorophyll content per cell in both the isolated zooxanthellae and sea anemone, and Yi, gross photosynthesis per cell, and overall gross photosynthesis in the sea anemone; however, despite the decline in gross photosynthesis, P:R remained constant due to the concurrent decline in respiration. Unfortunately, the corals in the HCl experiment died due to technical issues. There are two plausible reasons for this difference between CO2 and HCl. Firstly, HCl may have caused intracellular acidosis which damaged chloroplast structure and photosynthetic function. Secondly, the increased levels of aqueous CO2 stimulated photosynthetic function and hence mitigated for the effects of lowered pH. In addition, evidence is presented for a pH threshold for A. aureoradiata of between pH 6 and pH 6.75 (acidified with HCl), at which point photosynthesis 'shuts-down'. This suggests that, even without the potentially beneficial effects from increased CO2 levels, it is likely that oceanic pH would need to decrease to less than pH 6.75 for any acidosis effects to compromise the productivity of this particular symbiosis. Since acidification will have the benefits of increased CO2 and will reach nowhere near such low pH levels as those extremes tested here, it is proposed that ocean acidification via increased dissolution of CO2 into our oceans will have no impact on the photosynthetic production of symbiotic cnidarians. Indeed, it is entirely likely that increased CO2 will add some benefit to the usually carbon-limited symbiotic zooxanthellae. Ocean acidification is not likely to benefit corals however, with compromised calcification rates likely to undermine the viability of the coral. Symbiotic sea anemones, which do not bio-mineralise CaCO3, are better placed to take advantage of the increased CO2 as we move toward more acidic oceans.</p>

2021 ◽  
Author(s):  
◽  
Michael Doherty

<p>Ocean acidification has the potential to drastically alter the coral reef ecosystem by reducing the calcification rate of corals and other reef-builders, and hence a considerable amount of research is now focused on this issue. It also is conceivable that acidification may affect other physiological processes of corals. In particular, acidification may alter photosynthetic physiology and hence the productivity of the coraldinoflagellate symbiosis that is pivotal to the reef's survival and growth. However, very little is known about the impacts of acidification on the photophysiology of corals or, indeed, other invertebrate-algal symbioses. This gap in our knowledge was addressed here by measuring the impacts of acidification (pH 7.6 versus pH 8.1) on the photophysiology and health of the tropical coral Stylophora pistillata and its isolated dinoflagellate symbionts ('zooxanthellae'), and the temperate sea anemone Anthopleura aureoradiata. The comparative nature of this study allowed for any differences between tropical and temperate symbioses, and zooxanthellae in a symbiotic or free-living state, to be assessed. Corals, anemones and cultured zooxanthellae were maintained in flowthrough seawater systems, and treated either with non-acidified (control) seawater at pH 8.1, or seawater acidified with CO2 or HCl to pH 7.6. A variety of parameters, including zooxanthellar density, chlorophyll content, photosynthetic health (Yi), and the ratio of gross photosynthetic production to respiration (P:R) were measured via cell counts, spectrophotometry, respirometry and PAM fluorometry, at a series of time-points up to a maximum of 42 days. Acidification generated by the addition of CO2 had no discernible effect on Yi of either the corals or anemones. However, in the coral, chlorophyll content per zooxanthella cell increased by 25%, which was countered by a near-significant decline (22%) in the rate of gross photosynthesis per unit chlorophyll; as zooxanthellar density remained unchanged, this led to a constant P:R ratio. When acidified via CO2, the isolated zooxanthellae exhibited no impacts in recorded Yi or chlorophyll levels. The response of the anemone to acidification via CO2 was different to that observed in the coral, as the density of zooxanthellae increased, rather than the chlorophyll content per cell, leading to an increased rate of gross photosynthesis. However P:R again remained constant as the increased photosynthesis was matched by an increased rate of respiration. In contrast to the impacts of CO2, HCl adversely impacted the chlorophyll content per cell in both the isolated zooxanthellae and sea anemone, and Yi, gross photosynthesis per cell, and overall gross photosynthesis in the sea anemone; however, despite the decline in gross photosynthesis, P:R remained constant due to the concurrent decline in respiration. Unfortunately, the corals in the HCl experiment died due to technical issues. There are two plausible reasons for this difference between CO2 and HCl. Firstly, HCl may have caused intracellular acidosis which damaged chloroplast structure and photosynthetic function. Secondly, the increased levels of aqueous CO2 stimulated photosynthetic function and hence mitigated for the effects of lowered pH. In addition, evidence is presented for a pH threshold for A. aureoradiata of between pH 6 and pH 6.75 (acidified with HCl), at which point photosynthesis 'shuts-down'. This suggests that, even without the potentially beneficial effects from increased CO2 levels, it is likely that oceanic pH would need to decrease to less than pH 6.75 for any acidosis effects to compromise the productivity of this particular symbiosis. Since acidification will have the benefits of increased CO2 and will reach nowhere near such low pH levels as those extremes tested here, it is proposed that ocean acidification via increased dissolution of CO2 into our oceans will have no impact on the photosynthetic production of symbiotic cnidarians. Indeed, it is entirely likely that increased CO2 will add some benefit to the usually carbon-limited symbiotic zooxanthellae. Ocean acidification is not likely to benefit corals however, with compromised calcification rates likely to undermine the viability of the coral. Symbiotic sea anemones, which do not bio-mineralise CaCO3, are better placed to take advantage of the increased CO2 as we move toward more acidic oceans.</p>


2013 ◽  
Vol 10 (1) ◽  
pp. 83-109 ◽  
Author(s):  
P. Tremblay ◽  
M. Fine ◽  
J. F. Maguer ◽  
R. Grover ◽  
C. Ferrier-Pagès

Abstract. This study has examined the effect of an increased seawater pCO2 on the rates of photosynthesis and carbon translocation in the scleractinian coral species Stylophora pistillata using a new model based on 13C-labelling of the photosynthetic products. Symbiont photosynthesis contributes for a large part of the carbon acquisition in tropical coral species and is therefore an important process that may determine their survival under climate change scenarios. Nubbins of S. pistillata were maintained for six months under two pHs (8.1 and 7.2). Rates of photosynthesis and respiration of the symbiotic association and of isolated symbionts were assessed at each pH. The fate of 13C-photosynthates was then followed in the symbionts and the coral host for 48 h. Nubbins maintained at pH 7.2 presented a lower areal symbiont concentration, lower areal rates of gross photosynthesis, and lower carbon incorporation rates compared to nubbins maintained at pH 8.1, therefore suggesting that the total carbon acquisition was lower in this first set of nubbins. However, the total percentage of carbon translocated to the host, as well as the amount of carbon translocated per symbiont cell was significantly higher under pH 7.2 than under pH 8.1 (70% at pH 7.2 versus 60% at pH 8.1), so that the total amount of photosynthetic carbon received by the coral host was equivalent under both pHs (5.5 to 6.1 μg C cm−2 h−1). Although the carbon budget of the host was unchanged, symbionts acquired less carbon for their own needs (0.6 against 1.8 μg C cm−2 h−1), explaining the overall decrease in symbiont concentration at low pH. In the long-term, this decrease might have important consequences for the survival of corals under an acidification stress.


2021 ◽  
Vol 7 (2) ◽  
pp. eaba9958
Author(s):  
Maxence Guillermic ◽  
Louise P. Cameron ◽  
Ilian De Corte ◽  
Sambuddha Misra ◽  
Jelle Bijma ◽  
...  

The combination of thermal stress and ocean acidification (OA) can more negatively affect coral calcification than an individual stressors, but the mechanism behind this interaction is unknown. We used two independent methods (microelectrode and boron geochemistry) to measure calcifying fluid pH (pHcf) and carbonate chemistry of the corals Pocillopora damicornis and Stylophora pistillata grown under various temperature and pCO2 conditions. Although these approaches demonstrate that they record pHcf over different time scales, they reveal that both species can cope with OA under optimal temperatures (28°C) by elevating pHcf and aragonite saturation state (Ωcf) in support of calcification. At 31°C, neither species elevated these parameters as they did at 28°C and, likewise, could not maintain substantially positive calcification rates under any pH treatment. These results reveal a previously uncharacterized influence of temperature on coral pHcf regulation—the apparent mechanism behind the negative interaction between thermal stress and OA on coral calcification.


Author(s):  
Michel Praet-Van

This ultrastructural investigation of gametogenesis in a deep-sea anemone of the Bay of Biscay trawled around 2000 m depth, contributes to the knowledge of biology and strategy of reproduction of deep-sea benthos.This sea anemone is dioecious. The sperm appears very similar to those of shallow water sea anemones of the genus, Calliactis. The ultrastructural investigation of oogenesis allows the characteristics of the stages of previtellogenesis and vitellogenesis to be defined. The latter begins with a period of lipogenesis correlated with the formation of a trophonema. Mature oocytes measure up to 180 (im in diameter. Study of spermatogenesis and oogenesis reveals that spawning occurs in April/May. In males, the main area of testicular cysts, full of sperm, reaches maximal development from March to May and, in females, the percentage of mature oocytes decreases from 33% in April to 1% in May.Spawning may be induced by the advent in the deep-sea of the products of the spring phytoplankton bloom. This period of spawning, during the increased deposition of organic matter to the deep-sea floor, may be an advantageous strategy for early development of Paracalliactis.


1971 ◽  
Vol 55 (3) ◽  
pp. 611-640
Author(s):  
ELAINE A. ROBSON

1. In Gonactinia well-developed ectodermal muscle and nerve-net extend over the column and crown and play an important part in the anemone's behaviour. 2. Common sequences of behaviour are described. Feeding is a series of reflex contractions of different muscles by means of which plankton is caught and swallowed. Walking, in the form of brief looping steps, differs markedly in that it continues after interruptions. Anemones also swim with rapid tentacle strokes after contact with certain nudibranch molluscs, strong mechanical disturbance or electrical stimulation. 3. Swimming is attributed to temporary excitation of a diffuse ectodermal pacemaker possibly situated in the upper column. 4. From the results of electrical and mechanical stimulation it is concluded that the endodermal neuromuscular system resembles that of other anemones but that the properties of the ectodermal neuromuscular system require a new explanation. The size and spread of responses to electric shocks vary with intensity, latency is variable and there is a tendency to after-discharge. There is precise radial localization, for example touching a tentacle or the column causes it to bend towards or away from the stimulus. 5. A model to explain these and other features includes multipolar nerve cells closely linked to the nerve-net which would act as intermediate motor units, causing local contraction of the ectodermal muscle. This scheme can be applied to other swimming anemones but there is no evidence that it holds for sea anemones generally.


Zootaxa ◽  
2011 ◽  
Vol 3027 (1) ◽  
pp. 9 ◽  
Author(s):  
DANIEL LAURETTA ◽  
ESTEFANÍA RODRÍGUEZ ◽  
PABLO E. PENCHASZADEH

During 2007, 2008, and 2010, 23 specimens of an undescribed vermiform sea anemone were collected on Punta Pardelas and Fracaso Beach (Península Valdés, Argentina). The specimens have longitudinal rows of cinclides distally, all mesenteries perfect, tentacles hexamerously arranged without acrospheres, column not divisible into regions, no marginal sphincter and no conchula. We describe these specimens as a new species within the genus Harenactis (family Haloclavidae). Harenactis argentina sp. nov. is the second species of Harenactis; it represents the first record of this genus in the southern hemisphere and the first record of a soft bottom-dwelling sea anemone in the Argentine continental zone. Furthermore, we discuss the familial placement and relationships of the genus Harenactis and other athenarian sea anemones.


2021 ◽  
Author(s):  
◽  
Dorota Ewa Starzak

<p>Cnidarian–dinoflagellate symbioses, particularly those between anthozoans and dinoflagellates of the genus Symbiodinium (commonly referred to as zooxanthellae) are widespread in the marine environment. They are responsible for the formation of coral reefs and are thus of great ecological importance. In recent years there has been an increase in the frequency and severity of episodes of coral bleaching resulting in degradation and mortality of coral reefs on a global scale. In order to gain a deeper understanding of how corals can adapt to changing environmental conditions, the effect that symbiont type has on the persistence and physiology of an association needs to be ascertained. The aim of this research was to determine how different symbiont types affect the nutritional biology and intracellular physiology of the symbiosis when in association with the sea anemone Aiptasia pulchella. The specific objectives of the study were to; (1) determine whether different symbiont types are equally as adept at supporting the energetic demands of the same host; (2) determine if internal pH (pHi) is a reflection of symbiont type and whether the optimal pH for photosynthesis coincides with the host cell pHi; and (3) test the influence of Symbiodinium type on host tissue glycerol and glucose pools. In order to answer these questions, aposymbiotic (i.e. symbiont-free) sea anemones were infected with different Symbiodinium types and the relationship between symbiont type, photosynthetic performance and autotrophic potential was tested. A range of ‘normal’ and novel cnidarian–dinoflagellate symbioses was also used to measure host cell pHi and to determine the optimal pHi of isolated intact symbiosomes (i.e. the vacuoles that house the symbionts), as well as to compare the amounts of free glycerol and glucose (metabolites) present in the host tissues. Different host-symbiont combinations were found to have different photosynthetic and respiratory attributes. Earlier onset of full autotrophy (i.e. when all metabolic carbon demands of the symbiosis were met by photosynthesis) and higher CZAR values (i.e. the contribution of zooxanthellae to animal respiration) were demonstrated by symbioses hosting Symbiodinium B1 both from the original (homologous) and different (heterologous) host. The study showed that Symbiodinium types differ in their pH optima and that the optimal pHi for photosynthesis does not always match the actual measured pHi. Symbiont type was also shown to have an effect on host tissue glycerol and glucose pools, with the associations harbouring the homologous Symbiodinium B1 attaining the highest concentrations of both metabolites. Findings from this study suggest that corals may be able to maintain an association with a range of Symbiodinium types, and hence potentially switch as a consequence of bleaching. The new symbiont type may not be as nutritionally advantageous as the original type however, which could have implications for the growth and survivorship of the coral, unless it is able to supplement its carbon demands heterotrophically. The rapid proliferation of some of the heterologous Symbiodinium types (e.g. Symbiodinium E2) inside the host indicates that, after bleaching, there is potential for fast symbiont establishment. The reduced carbon contribution of these heterologous symbionts may not be a major concern should the coral be able to reinstate the more nutritionally advantageous symbiont as the dominant type during bleaching recovery. Finally, the rapid proliferation demonstrated by the heterologous Symbiodinium types and the associated metabolic cost to the host, could be an indication of the opportunistic nature of some of these types and may indicate a shift towards parasitism. It is imperative to extend this type of work to corals in the field to determine how these associations behave in nature. Also, in order to get a clearer picture of the diversity in symbiosis physiology, a wider range of Symbiodinium types needs to be investigated.</p>


2019 ◽  
Author(s):  
Benjamin M. Titus ◽  
Charlotte Benedict ◽  
Robert Laroche ◽  
Luciana C. Gusmão ◽  
Vanessa Van Deusen ◽  
...  

AbstractThe clownfish-sea anemone symbiosis has been a model system for understanding fundamental evolutionary and ecological processes. However, our evolutionary understanding of this symbiosis comes entirely from studies of clownfishes. A holistic understanding of a model mutualism requires systematic, biogeographic, and phylogenetic insight into both partners. Here, we conduct the largest phylogenetic analysis of sea anemones (Order Actiniaria) to date, with a focus on expanding the biogeographic and taxonomic sampling of the 10 nominal clownfish-hosting species. Using a combination of mtDNA and nuDNA loci we test 1) the monophyly of each clownfish-hosting family and genus, 2) the current anemone taxonomy that suggests symbioses with clownfishes evolved multiple times within Actiniaria, and 3) whether, like the clownfishes, there is evidence that host anemones have a Coral Triangle biogeographic origin. Our phylogenetic reconstruction demonstrates widespread poly-and para-phyly at the family and genus level, particularly within the family Stichodactylidae and genus Sticodactyla, and suggests that symbioses with clownfishes evolved minimally three times within sea anemones. We further recover evidence for a Tethyan biogeographic origin for some clades. Our data provide the first evidence that clownfish and some sea anemone hosts have different biogeographic origins, and that there may be cryptic species of host anemones. Finally, our findings reflect the need for a major taxonomic revision of the clownfish-hosting sea anemones.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 232
Author(s):  
Ekaterina S. Bocharova ◽  
Alexey A. Sergeev ◽  
Aleksandr A. Volkov

From the DNA libraries enriched by the repeat motifs (AAAC)6, (AATC)6, (ACAG)6, (ACCT)6, (ACTC)6, ACTG)6, (AAAT)8, (AACT)8, (AAGT)8, (AGAT)8, for two viviparous sea anemones Aulactinia stella and Cribrinopsis albopunctata, 41 primer pairs were developed. These primer pairs resulted in the identification of 41 candidate microsatellite loci in either A. stella or C. albopunctata. Polymorphic loci were identified in both sea anemone species for 13 of the primer pairs and can be applicable for population genetics researches.


2011 ◽  
Vol 80 (4) ◽  
pp. 251-268 ◽  
Author(s):  
Bert W. Hoeksema ◽  
Andrea L. Crowther

Phyllodiscus semoni is a morphologically variable sea anemone species from the Indo-Pacific with morphotypes ranging from upright and branched to low-lying and rounded. The apparent camouflage strategies of this sea anemone allow it to resemble other species or objects in its environment, such as stony corals, soft corals, seaweeds, or rocky boulders covered by algae, which may help it to avoid recognition by potential predators. Occasionally, it occurs in aggregations that may result from asexual reproduction. A high level of intraspecific morphological variation, including co-occurring aggregations of three different morphotypes, was observed in the Spermonde Archipelago off Makassar, South Sulawesi, Indonesia. The co-occurrence of aggregations with different morphotypes suggests that Phyllodiscus is a highly polymorphic monospecific genus. Sea anemones of this genus are not frequently encountered at other localities and the number of morphotypes seems large. Therefore, it is unlikely that we are dealing with more than one species that are all concentrated in a single area. Phyllodiscus sea anemones are considered dangerous to humans because their nematocysts contain highly toxic venoms that may inflict harmful stings. Therefore they are the subject of recent toxicological studies. The present paper aims to assist in the recognition of these highly variable hazardous animals and to discuss the appearance of their aggregations.


Sign in / Sign up

Export Citation Format

Share Document