tropical coral reef
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 13)

H-INDEX

14
(FIVE YEARS 2)

Author(s):  
James J. Bell ◽  
Valerio Micaroni ◽  
Francesca Strano

Despite the global focus on the occurrence of regime shifts on shallow-water tropical coral reefs over the last two decades, most of this research continues to focus on changes to algal-dominated states. Here, we review recent reports (in approximately the last decade) of regime shifts to states dominated by animal groups other than zooxanthellate Scleractinian corals. We found that while there have been new reports of regime shifts to reefs dominated by Ascidacea, Porifera, Octocorallia, Zoantharia, Actiniaria and azooxanthellate Scleractinian corals, some of these changes occurred many decades ago, but have only just been reported in the literature. In most cases, these reports are over small to medium spatial scales (<4 × 104 m2 and 4 × 104 to 2 × 106 m2, respectively). Importantly, from the few studies where we were able to collect information on the persistence of the regime shifts, we determined that these non-scleractinian states are generally unstable, with further changes since the original regime shift. However, these changes were not generally back to coral dominance. While there has been some research to understand how sponge- and octocoral-dominated systems may function, there is still limited information on what ecosystem services have been disrupted or lost as a result of these shifts. Given that many coral reefs across the world are on the edge of tipping points due to increasing anthropogenic stress, we urgently need to understand the consequences of non-algal coral reef regime shifts.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Jacob L Johansen ◽  
Lauren E Nadler ◽  
Adam Habary ◽  
Alyssa J Bowden ◽  
Jodie Rummer

As climate-driven heat waves become more frequent and intense, there is increasing urgency to understand how thermally sensitive species are responding. Acute heating events lasting days to months may elicit acclimation responses to improve performance and survival. However, the coordination of acclimation responses remains largely unknown for most stenothermal species. We documented the chronology of 18 metabolic and cardiorespiratory changes that occur in the gills, blood, spleen, and muscles when tropical coral reef fishes are thermally stressed (+3.0°C above ambient). Using representative coral reef fishes (Caesio cuning and Cheilodipterus quinquelineatus) separated by >100 million years of evolution and with stark differences in major life-history characteristics (i.e. lifespan, habitat use, mobility, etc.), we show that exposure duration illicited coordinated responses in 13 tissue and organ systems over 5 weeks. The onset and duration of biomarker responses differed between species, with C. cuning – an active, mobile species – initiating acclimation responses to unavoidable thermal stress within the first week of heat exposure; conversely, C. quinquelineatus – a sessile, territorial species – exhibited comparatively reduced acclimation responses that were delayed through time. Seven biomarkers, including red muscle citrate synthase and lactate dehydrogenase activities, blood glucose and hemoglobin concentrations, spleen somatic index, and gill lamellar perimeter and width, proved critical in evaluating acclimation progression and completion, as these provided consistent evaluation of thermal responses across species.


2020 ◽  
Vol 7 ◽  
Author(s):  
Noelle Lucey ◽  
Eileen Haskett ◽  
Rachel Collin

Global change has resulted in oceans that are warmer, more acidic, and lower in oxygen. Individually any one of these stressors can have numerous negative impacts on marine organisms, and in combination they are likely to be particularly detrimental. Understanding the interactions between these factors is important as they often covary, with warming promoting hypoxia, and hypoxia co-occurring with acidification. Few studies have examined how all three factors interact to affect organismal performance, and information is particularly sparse for tropical organisms. Here we documented a strong relationship between high temperatures, low dissolved oxygen (DO), and low pH in and around a tropical bay. We used these field values to inform two multi-stressor experiments. Each experimental factor had two levels, one representing current average conditions and the other representing current extreme conditions experienced in the area. We used sea urchin righting response as a measure of organismal performance for an important reef herbivore. In the first experiment 2-h exposures to a fully factorial combination of temperature, DO, and pH showed that righting success was significantly depressed under low oxygen. To more fully understand the impacts of pH, we acclimated sea urchins to control and low pH for 7 days and subsequently exposed them to the same experimental conditions. Sea urchins acclimated to control pH had significantly reduced righting success compared to animals acclimated to low pH, and righting success was significantly depressed under hypoxia and high temperature, compared to normoxia and ambient temperature. These results show that short, 2 h exposures to the temperature and DO extremes that are already experienced periodically by these animals have measurable detrimental effects on their performance. The positive impact of reduced pH is evident only over longer, 7 days durations, which are not currently experienced in this area.


2020 ◽  
Vol 9 (1) ◽  
pp. 296-304

The model starts with the formation of groups of fishermen/farmers /mangroves/women. The group produces something from mangrove forest that comes from creativity and ability to create something new as well as utilizing their members based on their abilities. After the formation of productive, creative and innovative groups of fishermen/ farmers / mangroves, the values are assessed and provided some benefits. Before going to the next stage, reflection on the groups formed is under the goals and objectives of the group formation. After reflection, it conducts a study of the suitability of the business sector that is carried out in the mangrove forest area. The suitability of the business sector must be based on environmentally friendly systems and mangrove conservation. It is called cultivation with the silvofishery system (integrating shrimp/fish cultivation with mangroves) and the use of environmentally friendly fishing tools. The next step is to formulate academic methods, then lay down the urgency and management paradigm of putting something important and the main patterns and models in the management of mangrove forests. After that phase, fixing management problems of mangrove forest. Mangrove forest management involves local communities and other stakeholders meanwhile the government, in this case, acting as a motivator and facilitator because of its understanding of the A. formosa growth and dynamics in the tropical coral reef ecosystems.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Alberto Rodriguez-Ramirez ◽  
Manuel González-Rivero ◽  
Oscar Beijbom ◽  
Christophe Bailhache ◽  
Pim Bongaerts ◽  
...  

Abstract Addressing the global decline of coral reefs requires effective actions from managers, policymakers and society as a whole. Coral reef scientists are therefore challenged with the task of providing prompt and relevant inputs for science-based decision-making. Here, we provide a baseline dataset, covering 1300 km of tropical coral reef habitats globally, and comprised of over one million geo-referenced, high-resolution photo-quadrats analysed using artificial intelligence to automatically estimate the proportional cover of benthic components. The dataset contains information on five major reef regions, and spans 2012–2018, including surveys before and after the 2016 global bleaching event. The taxonomic resolution attained by image analysis, as well as the spatially explicit nature of the images, allow for multi-scale spatial analyses, temporal assessments (decline and recovery), and serve for supporting image recognition developments. This standardised dataset across broad geographies offers a significant contribution towards a sound baseline for advancing our understanding of coral reef ecology and thereby taking collective and informed actions to mitigate catastrophic losses in coral reefs worldwide.


2020 ◽  
Vol 18 (3) ◽  
pp. 116-128
Author(s):  
Griffin Srednick ◽  
Jessica L. Bergman ◽  
Steve S. Doo ◽  
Myron Hawthorn ◽  
Jeffrey Ferree ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document