mechanochemical coupling
Recently Published Documents


TOTAL DOCUMENTS

101
(FIVE YEARS 15)

H-INDEX

22
(FIVE YEARS 4)

Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1799
Author(s):  
Ping Xie

Kinesin-1 is a motor protein that can step processively on microtubule by hydrolyzing ATP molecules, playing an essential role in intracellular transports. To better understand the mechanochemical coupling of the motor stepping cycle, numerous structural, biochemical, single molecule, theoretical modeling and numerical simulation studies have been undertaken for the kinesin-1 motor. Recently, a novel ultraresolution optical trapping method was employed to study the mechanics of the kinesin-1 motor and new results were supplemented to its stepping dynamics. In this commentary, the new single molecule results are explained well theoretically with one of the models presented in the literature for the mechanochemical coupling of the kinesin-1 motor. With the model, various prior experimental results for dynamics of different families of N-terminal kinesin motors have also been explained quantitatively.


2020 ◽  
Vol 397 ◽  
pp. 125503 ◽  
Author(s):  
Yulin Jiang ◽  
Chengen He ◽  
Shengqiang Qiu ◽  
Jinlong Zhang ◽  
Xianggang Wang ◽  
...  

2020 ◽  
Vol 21 (18) ◽  
pp. 6977
Author(s):  
Jingyu Qin ◽  
Hui Zhang ◽  
Yizhao Geng ◽  
Qing Ji

Kinesin-1 is a typical motile molecular motor and the founding member of the kinesin family. The most significant feature in the unidirectional motion of kinesin-1 is its processivity. To realize the fast and processive movement on the microtubule lattice, kinesin-1 efficiently transforms the chemical energy of nucleotide binding and hydrolysis to the energy of mechanical movement. The chemical and mechanical cycle of kinesin-1 are coupled to avoid futile nucleotide hydrolysis. In this paper, the research on the mechanical pathway of energy transition and the regulating mechanism of the mechanochemical cycle of kinesin-1 is reviewed.


2020 ◽  
Author(s):  
Thomas Blackwell ◽  
W. Tom Stump ◽  
Sarah R. Clippinger ◽  
Michael J. Greenberg

AbstractMolecular motors couple chemical transitions to conformational changes that perform mechanical work in a wide variety of biological processes. Disruption of this coupling can lead to diseases, and therefore there is a need to accurately measure mechanochemical coupling in motors in both health and disease. Optical tweezers, with nanometer spatial and millisecond temporal resolution, have provided valuable insights into these processes. However, fluctuations due to Brownian motion can make it difficult to precisely resolve these conformational changes. One powerful analysis technique that has improved our ability to accurately measure mechanochemical coupling in motor proteins is ensemble averaging of individual trajectories. Here, we present a user-friendly computational tool, Software for Precise Analysis of Single Molecules (SPASM), for generating ensemble averages of single-molecule data. This tool utilizes several conceptual advances, including optimized procedures for identifying single-molecule interactions and the implementation of a change point algorithm, to more precisely resolve molecular transitions. Using both simulated and experimental data, we demonstrate that these advances allow for accurate determination of the mechanics and kinetics of the myosin working stroke with a smaller set of data. Importantly, we provide our open source MATLAB-based program with a graphical user interface that enables others to readily apply these advances to the analysis of their own data.Statement of SignificanceSingle molecule optical trapping experiments have given unprecedented insights into the mechanisms of molecular machines. Analysis of these experiments is often challenging because Brownian motion-induced fluctuations introduce noise that can obscure molecular motions. A powerful technique for analyzing these noisy traces is ensemble averaging of individual binding interactions, which can uncover information about the mechanics and kinetics of molecular motions that are typically obscured by Brownian motion. Here, we provide an open source, easy-to-use computational tool, SPASM, with a graphical user interface for ensemble averaging of single molecule data. This computational tool utilizes several conceptual advances that significantly improve the accuracy and resolution of ensemble averages, enabling the generation of high-resolution averages from a smaller number of binding interactions.


2020 ◽  
Vol 19 (5) ◽  
pp. 1509-1521 ◽  
Author(s):  
Zhenhai Li ◽  
Hyunjung Lee ◽  
Suzanne G. Eskin ◽  
Shoichiro Ono ◽  
Cheng Zhu ◽  
...  

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Yuansheng Cao ◽  
Elisabeth Ghabache ◽  
Wouter-Jan Rappel

Eukaryotic cells can migrate using different modes, ranging from amoeboid-like, during which actin filled protrusions come and go, to keratocyte-like, characterized by a stable morphology and persistent motion. How cells can switch between these modes is not well understood but waves of signaling events are thought to play an important role in these transitions. Here we present a simple two-component biochemical reaction-diffusion model based on relaxation oscillators and couple this to a model for the mechanics of cell deformations. Different migration modes, including amoeboid-like and keratocyte-like, naturally emerge through transitions determined by interactions between biochemical traveling waves, cell mechanics and morphology. The model predictions are explicitly verified by systematically reducing the protrusive force of the actin network in experiments using Dictyostelium discoideum cells. Our results indicate the importance of coupling signaling events to cell mechanics and morphology and may be applicable in a wide variety of cell motility systems.


Sign in / Sign up

Export Citation Format

Share Document