unidirectional motion
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 14)

H-INDEX

13
(FIVE YEARS 2)

2021 ◽  
Vol 13 (3) ◽  
pp. 303-318
Author(s):  
Gennady V. Mishinsky ◽  

The article presents a number of experiments in liquid media on the transformation (transmutation) of atomic nuclei of some chemical elements into atomic nuclei of other chemical elements. In the theory of low-energy nuclear reactions, the transmutation of atomic nuclei occurs in strong magnetic fields, more than 30 T. Magnetic fields appear in ionized liquid media as a result of the unidirectional motion of an ensemble of electrons. The exchange interaction between electrons with parallel spins forms a self-consistent field in the medium, in which electrons pair into orthobosons with S = 1ћ. Orthobosons are attracted to each other and form orthoboson “solenoids” - “capsules” with strong magnetic fields inside. “Capsules” can fly out of liquid media, and then they are registered as unknown particles with strange properties. In some cases, when an electric current passes through the liquid, the electric current can be realized in the form of orthobosonic “solenoids” connected in continuous “filaments” from one electrode to another. Such “filaments” exhibit characteristics of superconductivity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
L. A. M. H. Kirkels ◽  
W. Zhang ◽  
Z. Rezvani ◽  
R. J. A. van Wezel ◽  
M. M. van Wanrooij

AbstractVisual motion perception depends on readout of direction selective sensors. We investigated in mice whether the response to bidirectional transparent motion, activating oppositely tuned sensors, reflects integration (averaging) or winner-take-all (mutual inhibition) mechanisms. We measured whole body opto-locomotor reflexes (OLRs) to bidirectional oppositely moving random dot patterns (leftward and rightward) and compared the response to predictions based on responses to unidirectional motion (leftward or rightward). In addition, responses were compared to stimulation with stationary patterns. When comparing OLRs to bidirectional and unidirectional conditions, we found that the OLR to bidirectional motion best fits an averaging model. These results reflect integration mechanisms in neural responses to contradicting sensory evidence as has been documented for other sensory and motor domains.


2021 ◽  
Vol 103 (1) ◽  
Author(s):  
A. R. C. Buarque ◽  
M. L. Lyra ◽  
W. S. Dias

Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2931
Author(s):  
Waldemar Nowicki

The structure and dynamic properties of polymer chains in a confined environment were studied by means of the Monte Carlo method. The studied chains were represented by coarse-grained models and embedded into a simple 3D cubic lattice. The chains stood for two-block linear copolymers of different energy of bead–bead interactions. Their behavior was studied in a nanotube formed by four impenetrable surfaces. The long-time unidirectional motion of the chain in the tight nanopore was found to be correlated with the orientation of both parts of the copolymer along the length of the nanopore. A possible mechanism of the anomalous diffusion was proposed on the basis of thermodynamics of the system, more precisely on the free energy barrier of the swapping of positions of both parts of the chain and the impulse of temporary forces induced by variation of the chain conformation. The mean bead and the mass center autocorrelation functions were examined. While the former function behaves classically, the latter indicates the period of time of superdiffusive motion similar to the ballistic motion with the autocorrelation function scaling with the exponent t5/3. A distribution of periods of time of chain diffusion between swapping events was found and discussed. The influence of the nanotube width and the chain length on the polymer diffusivity was studied.


2020 ◽  
Vol 21 (18) ◽  
pp. 6977
Author(s):  
Jingyu Qin ◽  
Hui Zhang ◽  
Yizhao Geng ◽  
Qing Ji

Kinesin-1 is a typical motile molecular motor and the founding member of the kinesin family. The most significant feature in the unidirectional motion of kinesin-1 is its processivity. To realize the fast and processive movement on the microtubule lattice, kinesin-1 efficiently transforms the chemical energy of nucleotide binding and hydrolysis to the energy of mechanical movement. The chemical and mechanical cycle of kinesin-1 are coupled to avoid futile nucleotide hydrolysis. In this paper, the research on the mechanical pathway of energy transition and the regulating mechanism of the mechanochemical cycle of kinesin-1 is reviewed.


Polymers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 619 ◽  
Author(s):  
Kun Liu ◽  
Shitong Chen ◽  
Feifei Chen ◽  
Xiangyang Zhu

Dielectric elastomer actuators (DEAs) are able to undergo large deformation in response to external electric stimuli and have been widely used to drive soft robotic systems, due to their advantageous attributes comparable to biological muscles. However, due to their isotropic material properties, it has been challenging to generate programmable actuation, e.g., along a predefined direction. In this paper, we provide an innovative solution to this problem by harnessing honeycomb metastructures to program the mechanical behavior of dielectric elastomers. The honeycomb metastructures not only provide mechanical prestretches for DEAs but, more importantly, transfer the areal expansion of DEAs into directional deformation, by virtue of the inherent anisotropy. To achieve uniaxial actuation and maximize its magnitude, we develop a finite element analysis model and study how the prestretch ratios and the honeycomb structuring tailor the voltage-induced deformation. We also provide an easy-to-implement and scalable fabrication solution by directly printing honeycomb lattices made of thermoplastic polyurethane on dielectric membranes with natural bonding. The preliminary experiments demonstrate that our designed DEA is able to undergo unidirectional motion, with the nominal strain reaching up to 15.8%. Our work represents an initial step to program deformation of DEAs with metastructures.


2019 ◽  
Vol 1389 ◽  
pp. 012001
Author(s):  
L A Pamyatnykh ◽  
M S Lysov ◽  
S E Pamyatnykh ◽  
D S Mekhonoshin ◽  
L Yu Agafonov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document