scholarly journals Improving the Alignment of Dynamic Sheet-Formed Mats by Changing Nozzle Geometry and Their Reinforcement of Polypropylene Matrix Composites

2021 ◽  
Vol 5 (9) ◽  
pp. 226
Author(s):  
Tom Sunny ◽  
Kim L. Pickering ◽  
John McDonald-Wharry

The main objective of this study was to improve the orientation of fibres within the mats produced using dynamic sheet forming (DSF). DSF is used to make fibre mats by forcing a fibre suspension through a nozzle onto a rotating drum. In this research, the effect of nozzle geometry on the orientation of hemp fibres within DSF mats was investigated. The orientation of fibres within the mats produced was assessed using ImageJ (OrientationJ) and X-ray diffraction. It was found that, as the contraction ratio of the nozzle increased, the orientation of fibres within the fibre mats increased. It was also found that the composite tensile strength increased with increased fibre orientation.

Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1979 ◽  
Author(s):  
Jing Zhang ◽  
Shibo Li ◽  
Shujun Hu ◽  
Yang Zhou

Ti3C2Tx MXene, a new 2D nanosheet material, is expected to be an attractive reinforcement of metal matrix composites because its surfaces are terminated with Ti and/or functional groups of –OH, –O, and –F which improve its wettability with metals. Thus, new Ti3C2Tx/Al composites with strong interfaces and novel properties are desired. To prepare such composites, the chemical stability of Ti3C2Tx with Al at high temperatures should be investigated. This work first reports on the chemical stability of Ti3C2Tx MXene with Al in the temperature range 500–700 °C. Ti3C2Tx is thermally stable with Al at temperatures below 700 °C, but it reacts with Al to form Al3Ti and TiC at temperatures above 700 °C. The chemical stability and microstructure of the Ti3C2Tx/Al samples were investigated by differential scanning calorimeter, X-ray diffraction analysis, scanning electron microscopy, and transmission electron microscopy.


2011 ◽  
Vol 275 ◽  
pp. 251-254
Author(s):  
Hua Wei Rong ◽  
Cheol Hong Park ◽  
Won Jo Park ◽  
Han Ki Yoon

With the rapid development of aerospace and automobile industries, metal matrix composites (MMCs) have attracted much attention because of its excellent performance. In this paper, Ni-Cr/AC8A composites reinforced with porous Ni-Cr preform were manufactured by low pressure infiltration process, infiltration temperatures are 700oC~850oC. The microstructure and phase composition of composites were evaluated using optical microscope, X-ray diffraction (XRD) and electro-probe microanalysis (EPMA), It's found that they're intermetallic compounds generated in the composites. Recently, intermetallic compounds have attracted much attention as high-temperature material. We study the hardness of Ni-Cr/AC8A composites, the results show the Ni-Cr/AC8A composite has high hardness due to the intermetallic compounds exist.


2021 ◽  
Vol 143 (11) ◽  
Author(s):  
Safa Polat ◽  
Yavuz Sun ◽  
Engin C¸evik

Abstract In this study, it was aimed to investigate the effects of reinforcements used for improving the thermal properties of AA6061 alloy on wear resistance. For this purpose, AA6061 matrix composites were produced by pressure infiltration method using ceramic microparticles (TiB2 and B4C) and graphene nanoparticles (GNPs). The produced composites were first characterized by porosity measurement, X-ray diffraction (XRD), and scanning electron microscopy (SEM) analysis. Then, the wear behavior was examined under three different loads (20–40–60 N) with the reciprocating ball on the flat method in a dry environment. Specific wear-rates were calculated according to the Archard principle by measuring the depth and width of the traces after tests with a profilometer. Wearing mechanisms were determined with the help of optical and microstructure images. According to the obtained results, it was found that B4C + GNPs reinforced samples were more resistant to abrasion at low loads, but TiB2 + GNPs reinforced samples were higher at higher loads.


2018 ◽  
Vol 53 (13) ◽  
pp. 9533-9544 ◽  
Author(s):  
Jérôme Andrieux ◽  
Bruno Gardiola ◽  
Olivier Dezellus

2008 ◽  
Vol 591-593 ◽  
pp. 430-435
Author(s):  
Adriana Scoton Antonio Chinelatto ◽  
R. Justus ◽  
Adilson Luiz Chinelatto ◽  
F.M.C.N. Nadal ◽  
E.A.T. Berg

The ceramic matrix composites (CMCs) can be fabricated by the pressure infiltration technique. In this work it was studied porous preforms of quartzite that were infiltrated with aluminum liquid. For to produce the more resistant preforms of quartzite, it was additioned different quantities of bentonite (5 and 10%) and the preforms were firing at 1100°C and 1200°C. For the composites production, the melted aluminum was introduced into preforms under a pressure of 7 MPa. The characterizations of the composites were made by X-ray diffraction, scanning electron microscopy, and flexure strength. All the preforms studied presented sufficient strength for support the pressing during the process of squeeze casting. The results of X-ray diffraction of composites showed the presence of alumina, silicon and aluminum and fully interpenetration aluminum-siliconalumina composites were obtained by infiltration.


2011 ◽  
Vol 46 (13) ◽  
pp. 1521-1534 ◽  
Author(s):  
H Kaftelen ◽  
ML Öveçoğlu

Elemental aluminum (Al) powders reinforced with 1–10 wt% of ultra-dispersed nanodiamond (UDD) powders were ball-milled in a SpexTM Mixer/Mill between 0 and 120 min followed by consolidation and sintering. X-ray diffraction analyses on the ball-milled powders revealed only α-Al peaks, whereas Al4C3 phase was identified along with α-Al in all sintered composites. Increasing the addition of nanodiamond to Al-matrix resulted in improved hardness of both ball-milled and sintered composites. The wear resistances of the Al-UDD composites were significantly improved with increasing UDD contents. Under similar load and sliding conditions, the wear resistance of Al matrix composite containing 10 wt% nanodiamond enhances about 40 times when compared with unreinforced aluminum.


2015 ◽  
Vol 830-831 ◽  
pp. 71-74 ◽  
Author(s):  
M.G. Ananda Kumar ◽  
S. Seetharamu ◽  
P. Sampath Kumaran ◽  
Jagannath Nayak

The Metal Matrix Composites (MMCs) especially Aluminum based systems have unique advantages of having superior mechanical, chemical and electrical properties, in addition to light weight and high stiffness. In this work, composites comprising of Aluminum with varied concentrations of Cenospheres as reinforcement was produced by Powder Metallurgy (PM) route. The densification of the composites was effected both by conventional and Microwave (MW) sintering techniques. The microstructures of the sintered samples were observed through scanning electron microscope (SEM) and phases by x ray diffraction technique (XRD), followed by evaluation of tribological parameter namely slide wear behavior and solid particle erosion resistance. The densities and the Brinell hardness values for the samples were also evaluated. The results showed that microwave sintered samples exhibited higher hardness, lower erosion and slide wear loss.


2014 ◽  
Vol 996 ◽  
pp. 936-943 ◽  
Author(s):  
Guillaume Geandier ◽  
Lilian Vautrot ◽  
Matthieu Salib ◽  
Mickael Mourot ◽  
Moukrane Dehmas ◽  
...  

Composite materials present interesting mechanical properties. The metal provides the toughness and the particles are adding elastic stiffness, strength, hardness and wear resistance. High energy X-ray diffraction has been used to characterize the microstructure evolution of two types of MMCs (titanium and steel matrix) reinforced with TiC particles.Evolutions of mass fraction and mean cell parameters shows the effect of reinforcement on the kinetics and mechanical state of the final composites.


2005 ◽  
Vol 475-479 ◽  
pp. 2551-2554 ◽  
Author(s):  
Si Young Sung ◽  
Keun Chang Park ◽  
Myoung Gyun Kim ◽  
Young Jig Kim

The aim of the present work is to investigate the possibility of in-situ synthesis and net-shape of the titanium matrix composites (TMCs) using a casting route. From the scanning electron microscopy (SEM), electron probe micro-analyzer (EPMA), X-ray diffraction (XRD) and thermodynamic calculations, the spherical TiC and needle like TiB reinforced hybrid TMCs could be obtained by the conventional casting route between titanium and B4C. No melts-mold reaction could be possible between (TiC+TiB) hybrid TMCs and the SKKU mold, since the mold is composed of interstitial and substitutional reaction products. Not only the sound in-situ synthesis but also the economic net-shape of TMCs could be possible by conventional casting route.


2014 ◽  
Vol 775-776 ◽  
pp. 471-475
Author(s):  
Renata Barbosa ◽  
Tatianny Soares Alves ◽  
Celso Hartmann Júnior ◽  
Gabriel Neiva Cadah

The physico-chemical characteristics of attapulgite clay confer appropriate properties to their different industrial uses, such as: Drilling fluid, bleaching of vegetable oils, mineral and animal grease and oil absorbents, pet waste absorbents (pet litter), purification of drinking water etc. The aim of this study was the chemical modification of attapulgite originally from state of Piauí, for applications in polyester-based composites. The unmodified and modified clay were characterized by X-ray diffraction (XRD). In order to evaluate the interaction of clays with organic solvents, the test of Foster swelling with gasoline, diesel and toluene was conducted. The polyester resin-based composite and clay unmodified and modified in different percentages were molded by hand lay up technique and they were characterized by water sorption.


Sign in / Sign up

Export Citation Format

Share Document