Micro-and-nanometer Topological Gradient of Block Copolymer Fibrous Scaffolds Towards Region-specific Cell Regulation

Author(s):  
Lei Chen ◽  
Qianqian Yu ◽  
Yifan Jia ◽  
Mengmeng Xu ◽  
Yingying Wang ◽  
...  
2020 ◽  
Vol 20 (4) ◽  
pp. 1900354 ◽  
Author(s):  
Rafał Poręba ◽  
Andres los Santos Pereira ◽  
Robert Pola ◽  
Siyu Jiang ◽  
Ognen Pop‐Georgievski ◽  
...  

2000 ◽  
Vol 662 ◽  
Author(s):  
Albert K. Shung ◽  
Antonios G. Mikos

AbstractThe overall goal of this project is to develop an in-situ polymerizable, biodegradable material for use in cardiovascular applications that minimizes non-specific cell adhesion and contains functional moieties for the attachment of peptides to induce specific cell attachment. A novel block copolymer has been developed incorporating poly(propylene fumarate) (PPF) and poly(ethylene glycol) which satisfies these criteria. PPF is a new biodegradable polymer currently being investigated for orthopedic and cardiovascular applications while PEG is a hydrophilic polymer that has been extensively studied for biomedical applications. The copolymer is chemically crosslinked with PEG diacrylate using an ammonium persulfate-ascorbic acid redox initiator system to form the hydrogel. The PEG and PPF block lengths can be varied to modulate the properties of the hydrogel formed. In this study, the following three parameters were studied, (1) PPF block length, (2) PEG block length, and (3) initial water content, were varied to examine their effects on swelling, degradation and elastic modulus. A factorial experimental design was implemented to assess which of these three parameters had the greatest impact on swelling, degradation and elastic modulus. Swelling was found to be most affected by the initial water content followed by PEG block length and PPF block length. The swelling of the hydrogels ranged from 48% water uptake with low initial water content to up to 77% water uptake with the high initial water content. After three weeks, degradation of the hydrogels ranged from 4-13% mass fraction lost. Elastic modulus was determined by tensile testing of the various hydrogel formulations and ranged from 0.4 to 7.7 MPa.


Author(s):  
Awtar Krishan ◽  
Nestor Bohonos

Cytochalasin B, a mould metabolite from Helminthosporium dermatioideum has been shown to interfere with specific cell activities such as cytoplasmic cleavage and cell movement. Cells undergoing nuclear division in the presence of cytochalasin B are unable to complete the separation of the resulting daughter cells. In time-lapse studies, the daughter cells coalesce after an initial unsuccessful attempt at separation and form large multinucleate polyploid cells. The present report describes the fine structure of the large polyploid cells induced in Earle's L-cell monolayer cultures by exposure to cytochalasin B (lγ/ml) for 92 hours.In the present material we have seen as many as 7 nuclei in these polyploid cells. Treatment with cytochalasin B for longer periods of time (6 to 7 days, with one medium change on the 3rd day) did not increase the number of nuclei beyond the 7 nuclei stage. Figure 1 shows a large polyploid cell with four nuclei. These nuclei are indistinguishable in their fine structure from those of the cells from control cultures but often show unusually large numbers of cytoplasmic invaginations and extensions of the nuclear surface (Figure 2).


Author(s):  
S. Tai

Extensive cytological and histological research, correlated with physiological experimental analysis, have been done on the anterior pituitaries of many different vertebrates which have provided the knowledge to create the concept that specific cell types synthesize, store and release their specific hormones. These hormones are stored in or associated with granules. Nevertheless, there are still many doubts - that need further studies, specially on the ultrastructure and physiology of these endocrine cells during the process of synthesis, transport and secretion, whereas some new methods may provide the information about the intracellular structure and activity in detail.In the present work, ultrastructural study of the hormone-secretory cells of chicken pituitaries have been done by using TEM as well as HR-SEM, to correlate the informations obtained from 2-dimensional TEM micrography with the 3-dimensional SEM topographic images, which have a continous surface with larger depth of field that - offers the adventage to interpretate some intracellular structures which were not possible to see using TEM.


2020 ◽  
Vol 4 (6) ◽  
pp. 645-675
Author(s):  
Parasuraman Padmanabhan ◽  
Mathangi Palanivel ◽  
Ajay Kumar ◽  
Domokos Máthé ◽  
George K. Radda ◽  
...  

Neurodegenerative diseases (NDDs), including Alzheimer's disease (AD) and Parkinson's disease (PD), affect the ageing population worldwide and while severely impairing the quality of life of millions, they also cause a massive economic burden to countries with progressively ageing populations. Parallel with the search for biomarkers for early detection and prediction, the pursuit for therapeutic approaches has become growingly intensive in recent years. Various prospective therapeutic approaches have been explored with an emphasis on early prevention and protection, including, but not limited to, gene therapy, stem cell therapy, immunotherapy and radiotherapy. Many pharmacological interventions have proved to be promising novel avenues, but successful applications are often hampered by the poor delivery of the therapeutics across the blood-brain-barrier (BBB). To overcome this challenge, nanoparticle (NP)-mediated drug delivery has been considered as a promising option, as NP-based drug delivery systems can be functionalized to target specific cell surface receptors and to achieve controlled and long-term release of therapeutics to the target tissue. The usefulness of NPs for loading and delivering of drugs has been extensively studied in the context of NDDs, and their biological efficacy has been demonstrated in numerous preclinical animal models. Efforts have also been made towards the development of NPs which can be used for targeting the BBB and various cell types in the brain. The main focus of this review is to briefly discuss the advantages of functionalized NPs as promising theranostic agents for the diagnosis and therapy of NDDs. We also summarize the results of diverse studies that specifically investigated the usage of different NPs for the treatment of NDDs, with a specific emphasis on AD and PD, and the associated pathophysiological changes. Finally, we offer perspectives on the existing challenges of using NPs as theranostic agents and possible futuristic approaches to improve them.


1971 ◽  
Vol 32 (C5) ◽  
pp. C5a-295-C5a-300
Author(s):  
A. KELLER ◽  
J. DLUGOSZ ◽  
M. J. FOLKES ◽  
E. PEDEMONTE ◽  
F. P. SCALISI ◽  
...  

2015 ◽  
Vol 30 (2) ◽  
pp. 171 ◽  
Author(s):  
CHEN Tao-Tao ◽  
LI Dan ◽  
JING Wen-Heng ◽  
FAN Yi-Qun ◽  
XING Wei-Hong

2005 ◽  
Vol 42 (3) ◽  
pp. 180-183 ◽  
Author(s):  
S. G. Schulz ◽  
U. Frieske ◽  
H. Kuhn ◽  
G. Schmid ◽  
F. Müller ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document