scholarly journals Vehicle Position Tracking Using Kalman Filter And CWLS Optimization

Author(s):  
Lubna Farhi

Vehicle position estimation for wireless network has been studied in many fields since it has the ability to provide a variety of services, such as detecting oncoming collisions and providing warning signals to alert the driver. The services provided are often based on collaboration among vehicles that are equipped with relatively simple motion sensors and GPS units. Awareness of its precise position is vital to every vehicle, so that it can provide accurate data to its peers. Currently, typical positioning techniques integrate GPS receiver data and measurements of the vehicles motion. However, when the vehicle passes through an environment that creates multipath effect, these techniques fail to produce high position accuracy that they attain in open environments. Unfortunately, vehicles often travel in environments that cause multipath effect, such as areas with high buildings, trees, or tunnels. The goal of this research is to minimize the multipath effect with respect to the position accuracy of vehicles. The proposed technique first detects whether there is disturbance in the vehicle position estimate that is caused by the multipath effect using hypothesis test. This technique integrates all information with the vehicle's own data and the Constrained Weighted Least Squares (CWLS) optimization approach with time difference of arrival (TDOA) technique and minimizes the position estimate error of the vehicle. Kalman filter is used for smoothing range data and mitigating the NLOS errors. The positioning problem is formulated in a state-space framework and the constraints on system states are considered explicitly. The proposed recursive positioning algorithm will be comparatively more robust to measurement errors because it updates the technique that feeds the position corrections back to the Kalman Filter as compared with a Kalman tracking algorithm that estimates the target track directly from the TDOA measurements. It compensates the GPS data and decreases random error influence to the position precision. The new techniques presented in this thesis decrease the error in the position estimate. Simulation results show that the proposed tracking algorithm can improve the accuracy significantly.

2021 ◽  
Author(s):  
Lubna Farhi

Vehicle position estimation for wireless network has been studied in many fields since it has the ability to provide a variety of services, such as detecting oncoming collisions and providing warning signals to alert the driver. The services provided are often based on collaboration among vehicles that are equipped with relatively simple motion sensors and GPS units. Awareness of its precise position is vital to every vehicle, so that it can provide accurate data to its peers. Currently, typical positioning techniques integrate GPS receiver data and measurements of the vehicles motion. However, when the vehicle passes through an environment that creates multipath effect, these techniques fail to produce high position accuracy that they attain in open environments. Unfortunately, vehicles often travel in environments that cause multipath effect, such as areas with high buildings, trees, or tunnels. The goal of this research is to minimize the multipath effect with respect to the position accuracy of vehicles. The proposed technique first detects whether there is disturbance in the vehicle position estimate that is caused by the multipath effect using hypothesis test. This technique integrates all information with the vehicle's own data and the Constrained Weighted Least Squares (CWLS) optimization approach with time difference of arrival (TDOA) technique and minimizes the position estimate error of the vehicle. Kalman filter is used for smoothing range data and mitigating the NLOS errors. The positioning problem is formulated in a state-space framework and the constraints on system states are considered explicitly. The proposed recursive positioning algorithm will be comparatively more robust to measurement errors because it updates the technique that feeds the position corrections back to the Kalman Filter as compared with a Kalman tracking algorithm that estimates the target track directly from the TDOA measurements. It compensates the GPS data and decreases random error influence to the position precision. The new techniques presented in this thesis decrease the error in the position estimate. Simulation results show that the proposed tracking algorithm can improve the accuracy significantly.


Author(s):  
Sirish Kumar Pagoti ◽  
Bala Sai Srilatha Indira Dutt Vemuri ◽  
Ganesh Laveti

If any Global Positioning System (GPS) receiver is operated in low latitude regions or urban canyons, the visibility further reduces. These system constraints lead to many challenges in providing precise GPS position accuracy over the Indian subcontinent. As a result, the standalone GPS accuracy does not meet the aircraft landing requirements, such as Category I (CAT-I) Precision Approaches. However, the required accuracy can be achieved by augmenting the GPS. Among all these issues, the predominant factors that significantly influence the receiver position accuracy are selecting a user/receiver position estimation algorithm. In this article, a novel method is proposed based on correntropy and designated as Correntropy Kalman Filter (CKF) for precise GPS applications and GPS Aided Geosynchronous equatorial orbit Augmented Navigation (GAGAN) based aircraft landings over the low latitude Indian subcontinent. The real-world GPS data collected from a dual-frequency GPS receiver located in the southern region of the Indian subcontinent (IISc), Bangalore with Lat/Long: 13.021°N/ 77.5°E) is used for the performance evaluation of the proposed algorithm. Results prove that the proposed CKF algorithm exhibits significant improvement (up to 34%) in position estimation compared to the traditional Kalman Filter.


Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4126 ◽  
Author(s):  
Taeklim Kim ◽  
Tae-Hyoung Park

Detection and distance measurement using sensors is not always accurate. Sensor fusion makes up for this shortcoming by reducing inaccuracies. This study, therefore, proposes an extended Kalman filter (EKF) that reflects the distance characteristics of lidar and radar sensors. The sensor characteristics of the lidar and radar over distance were analyzed, and a reliability function was designed to extend the Kalman filter to reflect distance characteristics. The accuracy of position estimation was improved by identifying the sensor errors according to distance. Experiments were conducted using real vehicles, and a comparative experiment was done combining sensor fusion using a fuzzy, adaptive measure noise and Kalman filter. Experimental results showed that the study’s method produced accurate distance estimations.


2021 ◽  
Vol 11 (15) ◽  
pp. 6805
Author(s):  
Khaoula Mannay ◽  
Jesús Ureña ◽  
Álvaro Hernández ◽  
José M. Villadangos ◽  
Mohsen Machhout ◽  
...  

Indoor positioning systems have become a feasible solution for the current development of multiple location-based services and applications. They often consist of deploying a certain set of beacons in the environment to create a coverage volume, wherein some receivers, such as robots, drones or smart devices, can move while estimating their own position. Their final accuracy and performance mainly depend on several factors: the workspace size and its nature, the technologies involved (Wi-Fi, ultrasound, light, RF), etc. This work evaluates a 3D ultrasonic local positioning system (3D-ULPS) based on three independent ULPSs installed at specific positions to cover almost all the workspace and position mobile ultrasonic receivers in the environment. Because the proposal deals with numerous ultrasonic emitters, it is possible to determine different time differences of arrival (TDOA) between them and the receiver. In that context, the selection of a suitable fusion method to merge all this information into a final position estimate is a key aspect of the proposal. A linear Kalman filter (LKF) and an adaptive Kalman filter (AKF) are proposed in that regard for a loosely coupled approach, where the positions obtained from each ULPS are merged together. On the other hand, as a tightly coupled method, an extended Kalman filter (EKF) is also applied to merge the raw measurements from all the ULPSs into a final position estimate. Simulations and experimental tests were carried out and validated both approaches, thus providing average errors in the centimetre range for the EKF version, in contrast to errors up to the meter range from the independent (not merged) ULPSs.


Sign in / Sign up

Export Citation Format

Share Document