Logic

2021 ◽  
pp. 230-282
Author(s):  
A. J. Cotnoir ◽  
Achille C. Varzi

This chapter considers whether mereology should rightly be thought of as a first-order theory with parthood as a binary predicate. It considers extensions of classical mereology aimed at overcoming the expressive limits of standard first-order languages, focusing on second-order and plural formulations. Relatedly, Lewis’s megethology and applications to the philosophy of mathematics are discussed. Then, several ways of modifying the framework to make room for mereological considerations involving time and modality are presented, such as the possibility that an object may have different parts at different times, or that it could have had different parts from the ones it actually has. Finally, a number of theories are expounded that can be developed in order to deal with the phenomenon of mereological indeterminacy, i.e., the fact that in some cases the very question of whether something is part of something else does not appear to have a definite answer.

Author(s):  
William A. Voter ◽  
Harold P. Erickson

In a previous experimental study of image formation using a thin (20 nm) negatively stained catalase crystal, it was found that a linear or first order theory of image formation would explain almost entirely the changes in the Fourier transform of the image as a function of defocus. In this case it was concluded that the image is a valid picture of the object density. For thicker, higher contrast objects the first order theory may not be valid. Second order effects could generate false diffraction spots which would lead to spurious and artifactual image details. These second order effects would appear as deviations of the diffraction spot amplitudes from the first order theory. Small deviations were in fact noted in the study of the thin crystals, but there was insufficient data for a quantitative analysis.


1977 ◽  
Vol 21 (02) ◽  
pp. 94-106
Author(s):  
Young S. Hong

The wave resistance due to the steady motion of a ship was formulated in Lagrangian coordinates by Wehausen [1].2 By introduction of an iteration scheme the solutions for the first order and second order3 were obtained. The draft/length ratio was assumed small in order to simplify numerical computation. In this work Wehausen's formulas are used to compute the resistance numerically. A few models are selected and the wave resistance is calculated. These results are compared with other methods and experiments. Generally speaking, the second-order resistance shows better agreement with experiment than first-order theory in only a restricted range of Froude number, say 0.25 to 0.35, and even here not uniformly. For larger Froude numbers it underestimates seriously.


1985 ◽  
Vol 50 (4) ◽  
pp. 953-972 ◽  
Author(s):  
Anne Bauval

This article is a rewriting of my Ph.D. Thesis, supervised by Professor G. Sabbagh, and incorporates a suggestion from Professor B. Poizat. My main result can be crudely summarized (but see below for detailed statements) by the equality: first-order theory of F[Xi]i∈I = weak second-order theory of F.§I.1. Conventions. The letter F will always denote a commutative field, and I a nonempty set. A field or a ring (A; +, ·) will often be written A for short. We shall use symbols which are definable in all our models, and in the structure of natural numbers (N; +, ·):— the constant 0, defined by the formula Z(x): ∀y (x + y = y);— the constant 1, defined by the formula U(x): ∀y (x · y = y);— the operation ∹ x − y = z ↔ x = y + z;— the relation of division: x ∣ y ↔ ∃ z(x · z = y).A domain is a commutative ring with unity and without any zero divisor.By “… → …” we mean “… is definable in …, uniformly in any model M of L”.All our constructions will be uniform, unless otherwise mentioned.§I.2. Weak second-order models and languages. First of all, we have to define the models Pf(M), Sf(M), Sf′(M) and HF(M) associated to a model M = {A; ℐ) of a first-order language L [CK, pp. 18–20]. Let L1 be the extension of L obtained by adjunction of a second list of variables (denoted by capital letters), and of a membership symbol ∈. Pf(M) is the model (A, Pf(A); ℐ, ∈) of L1, (where Pf(A) is the set of finite subsets of A. Let L2 be the extension of L obtained by adjunction of a second list of variables, a membership symbol ∈, and a concatenation symbol ◠.


2016 ◽  
Vol 33 ◽  
pp. 28-40
Author(s):  
Suzanne T.M. Bogaerds-Hazenberg ◽  
Petra Hendriks

Abstract It has been argued (e.g., by De Villiers and colleagues) that the acquisition of sentence embedding is necessary for the development of first-order Theory of Mind (ToM): the ability to attribute beliefs to others. This raises the question whether the acquisition of double embedded sentences is related to, and perhaps even necessary for, the development of second-order ToM: the ability to attribute beliefs about beliefs to others. This study tested 55 children (aged 7-10) on their ToM understanding in a false-belief task and on their elicited production of sentence embeddings. We found that second-order ToM passers produced mainly double embeddings, whereas first-order ToM passers produced mainly single embeddings. Furthermore, a better performance on second-order ToM predicted a higher rate of double embeddings and a lower rate of single embeddings in the production task. We conclude that children’s ability to produce double embeddings is related to their development of second-order ToM.


1969 ◽  
Vol 47 (3) ◽  
pp. 331-340 ◽  
Author(s):  
Marcel Baril

Combining an energy-dispersive element with a magnetic prism results in an achromatic mass dispersive instrument, if parameters are chosen appropriately. A plane electrostatic mirror has been chosen as the energy-dispersive element. Trajectories are described in terms of lateral, angular, and energy variations about the principal trajectory. Achromatism and conjugate plane conditions have been calculated by the powerful method of matrix algebra. The first order theory is given in this article (part one), the second order term will be studied in part two which will be published later.


1993 ◽  
Vol 58 (2) ◽  
pp. 672-687 ◽  
Author(s):  
P. T. Bateman ◽  
C. G. Jockusch ◽  
A. R. Woods

AbstractIt is shown, assuming the linear case of Schinzel's Hypothesis, that the first-order theory of the structure 〈ω; +, P〉, where P is the set of primes, is undecidable and, in fact, that multiplication of natural numbers is first-order definable in this structure. In the other direction, it is shown, from the same hypothesis, that the monadic second-order theory of 〈ω S, P〉 is decidable, where S is the successor function. The latter result is proved using a general result of A. L. Semënov on decidability of monadic theories, and a proof of Semënov's result is presented.


2006 ◽  
Vol 16 (02) ◽  
pp. 307-340 ◽  
Author(s):  
DIETRICH KUSKE ◽  
MARKUS LOHREY

Cayley-graphs of monoids are investigated under a logical point of view. It is shown that the class of monoids, for which the Cayley-graph has a decidable monadic second-order theory, is closed under free products. This result is derived from a result of Walukiewicz, stating that the decidability of monadic second-order theories is preserved under tree-like unfoldings. Concerning first-order logic, it is shown that the class of monoids, for which the Cayley-graph has a decidable first-order theory, is closed under arbitrary graph products, which generalize both, free and direct products. For the proof of this result, tree-like unfoldings are generalized to so-called factorized unfoldings. It is shown that the decidability of the first-order theory of a structure is preserved by factorized unfoldings. Several additional results concerning factorized unfoldings are shown.


1966 ◽  
Vol 31 (2) ◽  
pp. 169-181 ◽  
Author(s):  
Calvin C. Elgot ◽  
Michael O. Rabin

We study certain first and second order theories which are semantically defined as the sets of all sentences true in certain given structures. Let be a structure where A is a non-empty set, λ is an ordinal, and Pα is an n(α)-ary relation or function4 on A. With we associate a language L appropriate for which may be a first or higher order calculus. L has an n(α)-place predicate or function constant P for each α < λ. We shall study three types of languages: (1) first-order calculi with equality; (2) second-order monadic calculi which contain monadic predicate (set) variables ranging over subsets of A; (3) restricted (weak) second-order calculi which contain monadic predicate variables ranging over finite subsets of A.


1998 ◽  
Vol 09 (04) ◽  
pp. 431-454
Author(s):  
M. P. A. SELLINK

We embed a first order theory with equality in the Pure Type System λMON2 that is a subsystem of the well-known type system λPRED2. The embedding is based on the Curry-Howard isomorphism, i.e. → and ∀ coincide with → and Π. Formulas of the form [Formula: see text] are treated as Leibniz equalities. That is, [Formula: see text] is identified with the second order formula ∀ P. P(t1)→ P(t2), which contains only →'s and ∀'s and can hence be embedded straightforwardly. We give a syntactic proof — based on enriching typed λ-calculus with extra reduction steps — for the equivalence between derivability in the logic and inhabitance in λMNO2. Familiarity with Pure Type Systems is assumed.


Sign in / Sign up

Export Citation Format

Share Document