landscape configuration
Recently Published Documents


TOTAL DOCUMENTS

172
(FIVE YEARS 70)

H-INDEX

25
(FIVE YEARS 5)

2021 ◽  
Vol 9 ◽  
Author(s):  
Ingrid de Mattos ◽  
Bárbara Zimbres ◽  
Jader Marinho-Filho

Landscape conversion of natural environments into agriculture and pasture are driving a marked biodiversity decline in the tropics. Consequences of fragmentation might depend upon habitat amount in the landscape, while the quality of remnants can also affect some species. These factors have been poorly studied in relation to different spatial scales. Furthermore, the impacts of these human-driven alterations may go beyond species loss, possibly causing a loss of ecosystem function and services. In this study, we investigated how changes in landscape configuration (patch size and isolation), habitat loss (considering a landscape gradient of 10, 25, and 40% of remnant forest cover), and habitat quality (forest structure) affect small mammal abundance, richness, taxonomic/functional diversity, and species composition in fragmented landscapes of semideciduous forests in the Brazilian Cerrado. Analyses were performed separately for habitat generalists and forest specialists. We live-trapped small mammals and measured habitat quality descriptors four times in 36 forest patches over the years 2018 and 2019, encompassing both rainy and dry seasons, with a total capture effort of 45,120 trap-nights. Regression analyses indicated that the effect of landscape configuration was not dependent on the proportion of habitat amount in the landscape to determine small mammal assemblages. However, both patch size and habitat loss impacted different aspects of the assemblages in distinct ways. Smaller patches were mainly linked to an overall increase in small mammal abundance, while the abundance of habitat generalists was also negatively affected by habitat amount. Generalist species richness was determined by the proportion of habitat amount in the landscape. Specialist richness was influenced by patch forest quality only, suggesting that species with more demanding habitat requirements might respond to fragmentation and habitat loss at finer scales. Taxonomic or functional diversity were not influenced by landscape structure or habitat quality. However, patch size and habitat amount in the landscape were the major drivers of change in small mammal species composition in semideciduous forests in the Brazilian savanna.


2021 ◽  
Vol 154 (3) ◽  
pp. 341-350
Author(s):  
Lina Herbertsson ◽  
Johan Ekroos ◽  
Matthias Albrecht ◽  
Ignasi Bartomeus ◽  
Péter Batáry ◽  
...  

Background and aims – Agricultural intensification and loss of farmland heterogeneity have contributed to population declines of wild bees and other pollinators, which may have caused subsequent declines in insect-pollinated wild plants. Material and methods – Using data from 37 studies on 22 pollinator-dependent wild plant species across Europe, we investigated whether flower visitation and seed set of insect-pollinated plants decline with an increasing proportion of arable land within 1 km. Key results – Seed set increased with increasing flower visitation by bees, most of which were wild bees, but not with increasing flower visitation by other insects. Increasing proportion of arable land had a strongly variable effect on seed set and flower visitation by bees across studies. Conclusion – Factors such as landscape configuration, local habitat quality, and temporally changing resource availability (e.g. due to mass-flowering crops or honey bee hives) could have modified the effect of arable land on pollination. While our results highlight that the persistence of wild bees is crucial to maintain plant diversity, we also show that pollen limitation due to declining bee populations in homogenized agricultural landscapes is not a universal driver causing parallel losses of bees and insect-pollinated plants.


Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1584
Author(s):  
Antonio J. Pérez-Luque ◽  
Francisco J. Bonet-García ◽  
Regino Zamora

Land abandonment is a major global change driver in the Mediterranean region, where anthropic activity has played an important role in shaping landscape configuration. Understanding the woodland expansion towards abandoned croplands is critical to develop effective management strategies. In this study, we analyze the colonization pattern of abandoned croplands by Quercus pyrenaica in the Sierra Nevada mountain range (southern Spain). We aimed to assess differences among populations within the rear edge of the Q. pyrenaica distribution. For this purpose, we characterized (i) the colonization pattern of Q. pyrenaica, (ii) the structure of the seed source (surrounding forests), and (iii) the abundance of the main seed disperser (Eurasian jay, Garrulus glandarius). The study was conducted in five abandoned croplands located in two representative populations of Q. pyrenaica located on contrasting slopes. Vegetation plots within three habitat types (mature forest, edge-forest and abandoned cropland) were established to compute the abundance of oak juveniles. The abundance of European jay was determined using data of bird censuses (covering 7 years). Our results indicate that a natural recolonization of abandoned croplands by Q. pyrenaica is occurring in the rear edge of the distribution of this oak species. Oak juvenile abundance varied between study sites. Neither the surrounding-forest structure nor the abundance of jays varied significantly between study sites. The differences in the recolonization patterns seem to be related to differences in the previous- and post-abandonment management.


Geographies ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 217-237
Author(s):  
Luke Lambert ◽  
Fiona Cawkwell ◽  
Paul Holloway

Urban green and blue space (UGBS) is becoming increasingly important for supporting biodiversity, with the spatial configuration of these landscapes essential to supporting a range of taxa. The role of UGBS for supporting biodiversity is well established, but there remains a lack of consensus on the importance of the overall landscape configuration and the scale at which these configurations are analyzed. Moreover, statistical models are often compounded by coarse representations of UGBS that ignore ‘invisible’ spaces (i.e., gardens and brownfield sites). Using Sentinel-2 satellite data and a maximum likelihood classification, a comprehensive landcover map of Cork City, Ireland was produced with reliable accuracy. FRAGSTATS was then used to capture landscape metrics regarding the spatial configuration of the study area, at a city scale and at three spatial extents for each field site. Field surveys at 72 locations captured data on bird species richness and abundance, before generalized linear models (GLMs) were parameterized between biodiversity metrics and the landscape metrics at 50, 100, and 200 m scales. The UGBS classification revealed that two-thirds of the city is composed of green and blue space. The field surveys recorded 62 species in the city, while GLMs revealed that green space was a significant driver in increasing species richness and abundance, while blue space produced inversions in coefficient estimates, suggesting a more nuanced relationship. The edge effect phenomenon was suggested to play a key role in increasing bird diversity, with a diversified and varied urban landscape important. The impact of scale also affected how blue space was viewed as a connective network within the city, particularly in relation to biodiversity metrics. Overall, this study has demonstrated that UGBS is intrinsically linked to bird diversity. Moreover, 38% of the species recorded are listed as species of conservation concern in Ireland, highlighting how urban spaces can provide habitats for vulnerable species and should inform discussion on the role of geography within the implementation of conservation and planning initiatives for urban environs.


2021 ◽  
Vol 13 (21) ◽  
pp. 4397
Author(s):  
Jinya Li ◽  
Yang Zhang ◽  
Lina Zhao ◽  
Wanquan Deng ◽  
Fawen Qian ◽  
...  

Clarifying species-environment relationships is crucial for the development of efficient conservation and restoration strategies. However, this work is often complicated by a lack of detailed information on species distribution and habitat features and tends to ignore the impact of scale and landscape features. Here, we tracked 11 Oriental White Storks (Ciconia boyciana) with GPS loggers during their wintering period at Poyang Lake and divided the tracking data into two parts (foraging and roosting states) according to the distribution of activity over the course of a day. Then, a three-step multiscale and multistate approach was employed to model habitat selection characteristics: (1) first, we minimized the search range of the scale for these two states based on daily movement characteristics; (2) second, we identified the optimized scale of each candidate variable; and (3) third, we fit a multiscale, multivariable habitat selection model in relation to natural features, human disturbance and especially landscape composition and configuration. Our findings reveal that habitat selection of the storks varied with spatial scale and that these scaling relationships were not consistent across different habitat requirements (foraging or roosting) and environmental features. Landscape configuration was a more powerful predictor for storks’ foraging habitat selection, while roosting was more sensitive to landscape composition. Incorporating high-precision spatiotemporal satellite tracking data and landscape features derived from satellite images from the same periods into a multiscale habitat selection model can greatly improve the understanding of species-environmental relationships and guide efficient recovery planning and legislation.


2021 ◽  
Vol 112 ◽  
pp. 103769
Author(s):  
Rodrigo M. Mello ◽  
Rafael S. Laurindo ◽  
Lilith C. Silva ◽  
Marcela V. Pyles ◽  
Matheus C.S. Mancini ◽  
...  

Oikos ◽  
2021 ◽  
Author(s):  
Hugo Thierry ◽  
Ethan Rose ◽  
Haldre Rogers

Land ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 992
Author(s):  
Cruz Ferro-Vázquez ◽  
Rebeca Blanco-Rotea ◽  
Jorge Sanjurjo-Sánchez ◽  
Sonia García-Rodríguez ◽  
Marco V. García Quintela

Landscape multifunctionality is increasingly recognized as an important aspect in sustainability and developmental debates. Yet, how and why a multifunctional landscape configuration develops over time has not been sufficiently studied. Here we present the geoarchaeological investigation of the Santa Mariña de Augas Santas site, in northwestern Spain. We focus on the role of religious practice, and of its interplay with productive strategies, in landscape transformation. A geochemical, mineralogical, and geochronological characterization of the pedo-sedimentary record (including XRF, EA-IRMS, XRD, OSL and 14C measurements) allowed to characterize catchment scale sedimentation processes in relation to agricultural activities. The geographical and chronological coincidence of production functions with documented religious activities demonstrate that both aspects shared geographical spaces during the last millennium. Current landscape multifunctionality at Santa Mariña is thus not the final outcome of a specific evolution, but an essential aspect of traditional land use strategies through history and a driver of change. This work highlights the need of a long-term study of the processes of landscape configuration when assessing the sustainability of traditional productive systems.


Author(s):  
Jakob Wildraut ◽  
Marco Basile

ABSTRACT Landscape configuration can influence the distribution of species across multiple spatial scales. The primary factors related to this process are connectivity, the size and position of habitat patches, and edge effects. These factors together determine the overall fragmentation of a landscape, which in turn influences species occurrence. Although some species show a negative response to fragmentation, others benefit from it. Potential effects may act over multiple spatial scales, possibly with contrasting effects on species occurrence. We chose the Tawny Owl (Strix aluco), a ubiquitous and generalist species, to study the influence of fragmentation on species occurrence and to identify relevant landscape metrics, using multi-scale hierarchical modelling. Between 2016 and 2018, we recorded Tawny Owls on 64 sampling sites located in a forested landscape. We used a space-for-time substitution in the framework of occupancy modelling to assess Tawny Owl responses to landscape fragmentation. We found that the Tawny Owl is widespread in the study area. Its distribution across the landscape (larger spatial scale) was related to a heterogeneous configuration of forest patches, while high connectivity of coniferous forest influenced its occurrence at a smaller spatial scale (sites). Overall, the Tawny Owl prefers landscapes with well-connected forest patches and an uneven patch distribution in the surrounding area.


Sign in / Sign up

Export Citation Format

Share Document