hydrogen elimination
Recently Published Documents


TOTAL DOCUMENTS

225
(FIVE YEARS 23)

H-INDEX

30
(FIVE YEARS 1)

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Sobi Asako ◽  
Ikko Takahashi ◽  
Hirotaka Nakajima ◽  
Laurean Ilies ◽  
Kazuhiko Takai

AbstractWith sodium being the most abundant alkali metal on Earth, organosodium compounds are an attractive choice for sustainable chemical synthesis. However, organosodium compounds are rarely used—and are overshadowed by organolithium compounds—because of a lack of convenient and efficient preparation methods. Here we report a halogen–sodium exchange method to prepare a large variety of (hetero)aryl- and alkenylsodium compounds including tri- and tetrasodioarenes, many of them previously inaccessible by other methods. The key discovery is the use of a primary and bulky alkylsodium lacking β-hydrogens, which retards undesired reactions, such as Wurtz–Fittig coupling and β-hydrogen elimination, and enables efficient halogen–sodium exchange. The alkylsodium is readily prepared in situ from neopentyl chloride and an easy-to-handle sodium dispersion. We believe that the efficiency, generality, and convenience of the present method will contribute to the widespread use of organosodium in organic synthesis, ultimately contributing to the development of sustainable organic synthesis by rivalling the currently dominant organolithium reagents.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1853
Author(s):  
Tao Xing ◽  
Yong Xu ◽  
Juying Wu ◽  
Yu Wang ◽  
Lifeng Yan

Hydrogen generation and accumulation in confined spaces poses safety concerns due to its reactivity with oxygen to form explosions and the ability to embrittle metals. Various organic getters have been developed to eliminate hydrogen and minimize these undesired effects; however, these getters are usually powders with low molecular weights and are difficult to apply in complex structures. Polymer getters exhibit the promising features required for confined space applications, where could be readily processed into various shapes and forms. Unfortunately, polymer getters are relatively unexplored and their recorded performances are far from satisfactory. In this work, we report the preparation and characterization of novel vinyl polysiloxane getters. Starting from a methyl vinyl silicone oil prepared by ring-opening polymerization, polysiloxane getters in versatile forms that are adaptable to various environments are prepared by adding Pd/C and then curing. Combined with the thermal and radiation stability of polysiloxane, not only will these new getters be applicable in future applications in the electronic and nuclear industries as hydrogen scavengers, they also serve as platform for further development of polymer getters with superior properties.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ge Zhang ◽  
Yi-Kang Song ◽  
Fang Zhang ◽  
Ze-Jian Xue ◽  
Meng-Yao Li ◽  
...  

AbstractThe rational design based on a deep understanding of the present reaction mechanism is an important, viable approach to discover new organic transformations. β-Hydrogen elimination from palladium complexes is a fundamental reaction in palladium catalysis. Normally, the eliminated β-hydrogen has to be attached to a sp3-carbon. We envision that the hydrogen elimination from sp2-carbon is possible by using thoroughly designed reaction systems, which may offer a new strategy for the preparation of allenes. Here, we describe a palladium-catalyzed cross-coupling of 2,2-diarylvinyl bromides and diazo compounds, where a β-vinylic hydrogen elimination from allylic palladium intermediate is proposed to be the key step. Both aryl diazo carbonyl compounds and N-tosylhydrazones are competent carbene precursors in this reaction. The reaction mechanism is explored by control experiments, KIE studies and DFT calculations.


2021 ◽  
Author(s):  
Shi-Jun Li ◽  
Wei Fang ◽  
Jeremy O Richardson ◽  
De-Cai Fang

Metal-TEMPO hybrids are a family of novel and promising catalysts for aerobic oxidation of alcohols, yet the underlying mechanisms have not been understood theoretically. Using density functional theory, we probe...


Molecules ◽  
2020 ◽  
Vol 25 (16) ◽  
pp. 3612 ◽  
Author(s):  
Akhilesh Sharma ◽  
Masaharu Nakamura

To explore plausible reaction pathways of the cross-coupling reaction between a haloalkane and an aryl metal reagent catalyzed by an iron–phosphine complex, we examine the reaction of FeBrPh(SciOPP) 1 and bromocycloheptane employing density functional theory (DFT) calculations. Besides the cross-coupling, we also examined the competitive pathways of β-hydrogen elimination to give the corresponding alkene byproduct. The DFT study on the reaction pathways explains the cross-coupling selectivity over the elimination in terms of FeI/FeII/FeIII mechanism which involves the generation of alkyl radical intermediates and their propagation in a chain reaction manner. The present study gives insight into the detailed molecular mechanic of the cross-coupling reaction and revises the FeII/FeII mechanisms previously proposed by us and others.


2020 ◽  
Author(s):  
Ge Zhang ◽  
Yi-Kang Song ◽  
Fang Zhang ◽  
Ze-Jian Xue ◽  
Meng-Yao Li ◽  
...  

Abstract The rational design based on a deep understanding of the present reaction mechanism is an important, viable approach to discover new organic transformations. β-Hydrogen elimination from palladium complexes is an fundamental reaction in palladium catalysis. Normally, the eliminated β-hydrogen has to be attached to a sp3-carbon. We envision that the hydrogen elimination from sp2-carbon is possible by using delicately planed reaction systems, which may offer a new strategy for the preparation of allenes. With this consideration in mind, the palladium-catalyzed cross-coupling of 2,2-diarylvinyl bromides with diazo compounds was realized with a β-vinylic hydrogen elimination from allylic palladium intermediate as the key step. Both aryl diazo carbonyl compounds and N-tosylhydrazones are competent carbene precursors in this reaction. The reaction mechanism was explored by control experiments, KIE studies and DFT calculations


2020 ◽  
Author(s):  
Sobi Asako ◽  
Ikko Takahashi ◽  
Hirotaka Nakajima ◽  
Laurean Ilies ◽  
Kazuhiko Takai

<p>Sodium is the most abundant alkali metal on Earth. Despite being an attractive choice for sustainable synthesis, organosodium compounds are rarely used in organic synthesis and have been overshadowed to date by organolithium compounds. This situation is largely due to the lack of convenient and efficient methods for the preparation of organosodium compounds. We report herein a halogen–sodium exchange method to prepare a large variety of (hetero)aryl- and alkenylsodium compounds, many of them previously inaccessible by other methods. The key discovery is the use of a bulky alkylsodium lacking a <i>β</i>-hydrogen, readily prepared in situ from neopentyl chloride and an easy-to-handle sodium dispersion, which retards undesired reactions such as Wurtz–Fittig coupling and <i>β</i>-hydrogen elimination, and enables efficient halogen-sodium exchange. We believe that the efficiency, generality, and convenience of the present method will open new horizons for the use of organosodium in organic synthesis, ultimately contributing to the development of sustainable chemistry by replacing the currently dominant organolithium reagents.<b></b></p>


2020 ◽  
Author(s):  
Sobi Asako ◽  
Ikko Takahashi ◽  
Hirotaka Nakajima ◽  
Laurean Ilies ◽  
Kazuhiko Takai

<p>Sodium is the most abundant alkali metal on Earth. Despite being an attractive choice for sustainable synthesis, organosodium compounds are rarely used in organic synthesis and have been overshadowed to date by organolithium compounds. This situation is largely due to the lack of convenient and efficient methods for the preparation of organosodium compounds. We report herein a halogen–sodium exchange method to prepare a large variety of (hetero)aryl- and alkenylsodium compounds, many of them previously inaccessible by other methods. The key discovery is the use of a bulky alkylsodium lacking a <i>β</i>-hydrogen, readily prepared in situ from neopentyl chloride and an easy-to-handle sodium dispersion, which retards undesired reactions such as Wurtz–Fittig coupling and <i>β</i>-hydrogen elimination, and enables efficient halogen-sodium exchange. We believe that the efficiency, generality, and convenience of the present method will open new horizons for the use of organosodium in organic synthesis, ultimately contributing to the development of sustainable chemistry by replacing the currently dominant organolithium reagents.<b></b></p>


2020 ◽  
Author(s):  
Josh Wheeler ◽  
Ryan Carlsen ◽  
Daniel Ess

<div>The transfer of a -hydrogen from a metal-alkyl group to ethylene is a fundamental</div><div>organometallic transformation. Previously proposed mechanisms for this transformation involve either a</div><div>two-step -hydrogen elimination and migratory insertion sequence with a metal hydride intermediate</div><div>or a one-step concerted pathway. Here, we report density functional theory (DFT) quasiclassical direct</div><div>dynamics trajectories that reveal new dynamical mechanisms for the -hydrogen transfer of</div><div>[Cp*RhIII(Et)(ethylene)]</div><div>Despite the DFT energy landscape showing a two-step mechanism with a Rh-H</div><div>intermediate, quasiclassical trajectories commencing from the -hydrogen elimination transition state</div><div>revealed complete dynamical skipping of this intermediate. The skipping occurred either extremely fast</div><div>(typically <100 femtoseconds (fs)) through a dynamically ballistic mechanism or slower through a</div><div>dynamically unrelaxed mechanism. Consistent with trajectories begun at the transition state, all</div><div>trajectories initiated at the Rh-H intermediate show continuation along the reaction coordinate. All of</div><div>these trajectory outcomes are consistent with the Rh-H intermediate <1 kcal/mol stabilized relative to</div><div>the -hydrogen elimination and migratory insertion transition states. For Co, which on the energy</div><div>landscape is a one-step concerted mechanism, trajectories showed extremely fast traversing of the</div><div>transition-state zone (<50 fs), and this concerted mechanism is dynamically different than the Rh</div><div>ballistic mechanism. In contrast to Rh, for Ir, in addition to dynamically ballistic and unrelaxed</div><div>mechanisms, trajectories also stopped at the Ir-H intermediate. This is consistent with an Ir-H</div><div>intermediate that is stabilized by ~3 kcal/mol relative to the -hydrogen elimination and migratory</div><div>insertion transition states. Overall, comparison of Rh to Co and Ir provides understanding of the</div><div>relationship between the energy surface shape and resulting dynamical mechanisms of an</div><div>organometallic transformation.</div>


2020 ◽  
Author(s):  
Josh Wheeler ◽  
Ryan Carlsen ◽  
Daniel Ess

<div>The transfer of a -hydrogen from a metal-alkyl group to ethylene is a fundamental</div><div>organometallic transformation. Previously proposed mechanisms for this transformation involve either a</div><div>two-step -hydrogen elimination and migratory insertion sequence with a metal hydride intermediate</div><div>or a one-step concerted pathway. Here, we report density functional theory (DFT) quasiclassical direct</div><div>dynamics trajectories that reveal new dynamical mechanisms for the -hydrogen transfer of</div><div>[Cp*RhIII(Et)(ethylene)]</div><div>Despite the DFT energy landscape showing a two-step mechanism with a Rh-H</div><div>intermediate, quasiclassical trajectories commencing from the -hydrogen elimination transition state</div><div>revealed complete dynamical skipping of this intermediate. The skipping occurred either extremely fast</div><div>(typically <100 femtoseconds (fs)) through a dynamically ballistic mechanism or slower through a</div><div>dynamically unrelaxed mechanism. Consistent with trajectories begun at the transition state, all</div><div>trajectories initiated at the Rh-H intermediate show continuation along the reaction coordinate. All of</div><div>these trajectory outcomes are consistent with the Rh-H intermediate <1 kcal/mol stabilized relative to</div><div>the -hydrogen elimination and migratory insertion transition states. For Co, which on the energy</div><div>landscape is a one-step concerted mechanism, trajectories showed extremely fast traversing of the</div><div>transition-state zone (<50 fs), and this concerted mechanism is dynamically different than the Rh</div><div>ballistic mechanism. In contrast to Rh, for Ir, in addition to dynamically ballistic and unrelaxed</div><div>mechanisms, trajectories also stopped at the Ir-H intermediate. This is consistent with an Ir-H</div><div>intermediate that is stabilized by ~3 kcal/mol relative to the -hydrogen elimination and migratory</div><div>insertion transition states. Overall, comparison of Rh to Co and Ir provides understanding of the</div><div>relationship between the energy surface shape and resulting dynamical mechanisms of an</div><div>organometallic transformation.</div>


Sign in / Sign up

Export Citation Format

Share Document