strontium carbonate
Recently Published Documents


TOTAL DOCUMENTS

143
(FIVE YEARS 21)

H-INDEX

19
(FIVE YEARS 3)

Minerals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 36
Author(s):  
Patrycja Kowalik ◽  
Dorota Kopyto ◽  
Mateusz Ciszewski ◽  
Michał Drzazga ◽  
Katarzyna Leszczyńska-Sejda

This work focused on purifying copper electrolytes from a bismuth impurity on a laboratory scale. The electrolyte came from Polish copper electrorefineries with the content of main components, g/dm3: 49.6 Cu, 160 H2SO4. The electrolyte was enriched in bismuth by Bi2O3 addition. Purification of bismuth contamination was carried out using selected agents with adsorbing effects, such as barium hydroxide octahydrate, strontium carbonate, barium carbonate, barium and lead sulfates. The trials were performed until achieving the Bi level—below 0.1 g/dm3. During the experiments, it was noticed that electrolyte purification degree depends on initial Bi concentration in electrolyte, time and temperature, as well as on the type and amount of the bismuth-lowering agent. The most satisfactory results of Bi impurity removal were with additions of barium hydroxide octahydrate, strontium carbonate and barium carbonate to electrolyte at 60 °C for 1 h. These parameters revealed the highest electrolyte purification degree. Bismuth is not removed effectively from electrolytes by barium sulfate or lead sulfate addition. The efficiency of the purification process is much higher when the agents are added to the solution in the form of carbonates or hydroxides. Extending the electrolyte purification process time may cause dissolution of bismuth from the resulting precipitate and increase of bismuth concentration in electrolytes.


2021 ◽  
Vol 897 ◽  
pp. 79-84
Author(s):  
Satrio Herbirowo ◽  
Hedy Putra Pratama ◽  
Akhmad Herman Yuwono ◽  
Nofrijon Sofyan ◽  
Agung Imaduddin

Bi-Pb-Sr-Ca-Cu-O (BPSCCO) superconductors are recognized as a projectable high-temperature superconductor for high-efficiency electrical applications. The addition of Ti enhances the formation of the Bi-2223 phase from the BPSCCO superconductor. The process of producing BPSCCO superconducting materials with TiO2 dopants is performed by the solid-state process and the production of wire rolling, consisting of bismuth (III) oxide powder (Bi2O3 = 99%), Strontium Carbonate powder (SrCO3 = 99%), Calcium Carbonate powder (CaCO3 = 99%), Copper Oxide powder (CuO2 = 99%), Lead Oxide powder (PbO2 = 98%) Bi: Pb: Sr: Ca: Cu ratio: 1.6: 0.4:2:2:3 doped by 1 %wt Titanium Oxide powder (TiO2 = 98.5%). The variables used in this study were the comparison of the sintering method at 860°C for 24 hours and 820 °C calcination for 20 hours, and 850°C sintering for 20 hours. The superconductor characterization was tested through the X-Ray Diffraction (XRD) test, Scanning Electron Microscopy (SEM), and Resistivity test. XRD test results showed the formation of Bi2Sr2CuO6 and Bi2Sr5Cu3O16 phase. SEM results showed an increase in grain size. The resistivity test results showed that all samples formed critical temperatures, 9.6 and 9.5K respectively.


2021 ◽  
pp. 2105806
Author(s):  
Weijian Fang ◽  
Hang Ping ◽  
Xinhui Li ◽  
Xiaofei Liu ◽  
Fuqiang Wan ◽  
...  

2021 ◽  
pp. 105729
Author(s):  
Fangjia Yan ◽  
Xiaojuan Zhang ◽  
Edouard Asselin ◽  
Dongping Duan ◽  
Zhibao Li
Keyword(s):  

2021 ◽  
pp. 20200323
Author(s):  
Sawyer Rhae Badiuk ◽  
David K Sasaki ◽  
Daniel W Rickey

Objective: The aim of this study was to construct an anthropomorphic maxillofacial phantom for dental imaging and dosimetry purposes using three-dimensional (3D) printing technology and materials that simulate the radiographic properties of tissues. Methods: Stereolithography photoreactive resins, polyurethane rubber and epoxy resin were modified by adding calcium carbonate and strontium carbonate powders or glass bubbles. These additives were used to change the materials’ CT numbers to mimic various body tissues. A maxillofacial phantom was designed using CT images of a head. Results: Commercial 3D printing resins were found to have CT numbers near 120 HU and were used to print intervertebral discs and an external skin for the maxillofacial phantom. By adding various amounts of calcium carbonate and strontium carbonate powders the CT number of the resin was raised to 1000 & 1500 HU and used to print bone mimics. Epoxy resin modified by adding glass bubbles was used in assembly and as a cartilaginous mimic. Glass bubbles were added to polyurethane rubber to reduce the CT number to simulate soft tissue and filled spaces between the printed anatomy and external skin of the phantom. Conclusion: The maxillofacial phantom designed for dental imaging and dosimetry constructed using 3D printing, polyurethane rubbers and epoxy resins represented a patient anatomically and radiographically. The results of the designed phantom, materials and assembly process can be applied to generate different phantoms that better represent diverse patient types and accommodate different ion chambers.


Catalysts ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 398
Author(s):  
Shigeru Sugiyama ◽  
Ikumi Okitsu ◽  
Kazuki Hashimoto ◽  
Yutaro Maki ◽  
Naohiro Shimoda ◽  
...  

The effect that UV-LED irradiation exerted on a sodium-modified silver catalyst supported on strontium carbonate (Ag-Na/SrCO3) was examined during an epoxidation of propylene to propylene oxide. Based on our previous study, we used Ag(56)-Na(1)/SrCO3 in this study. The numbers in parentheses refer to the weight percentage of silver and sodium. Although this catalyst system did not contain typical photocatalysts such as titanium oxide or tungsten oxide, UV-LED irradiation of Ag(56)-Na(1)/SrCO3 resulted in an evident improvement in the selectivity and yield of propylene oxide. Such an advantageous effect of UV-LED irradiation could not be discussed based on the bandgap used in photocatalysts and, therefore, we proposed a mechanism based on the plasmon excitation of silver, which could be accomplished using the irradiation wavelength of UV-LED to produce electrons. Since the lifespan of these electrons is expected to be short, it is difficult to place them into direct contact with the gas phase of oxygen. Once the generated electrons move to SrCO3, however, the lifespan is improved, which could allow suitable contact with oxygen in the gas phase to form active oxygen. If the oxygen is active for epoxidation as hydrogen peroxide, this could explain the improvement in activity from UV-LED irradiation.


Sign in / Sign up

Export Citation Format

Share Document