threshold friction velocity
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 10)

H-INDEX

13
(FIVE YEARS 2)

Land ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1224
Author(s):  
Akito Kono ◽  
Toshiya Okuro

Vegetation influences the occurrence of saltation through various mechanisms. Most previous studies have focused on the effects of vegetation on saltation occurrence under spatially homogeneous vegetation, whereas few field studies have examined how spatially heterogeneous cover affects saltation. To examine how spatial heterogeneity of vegetation influences saltation, we surveyed the vegetation and spatial distribution of shrubs and conducted roughness measurements at 11 sites at Tsogt-Ovoo, Gobi steppe of Mongolia, which are dominated by the shrubs Salsola passerina and Anabasis brevifolia. Saltation and meteorological observations were used to calculate the saltation flux, threshold friction velocity, and roughness length. The spatial distribution of shrubs was estimated from the intershrub distance obtained by calculating a semivariogram. Threshold friction velocity was well explained by roughness length. The relationships among roughness, saltation flux, and vegetation cover depended on the spatial distribution of shrubs. When the vegetation was distributed heterogeneously, roughness length increased as the vegetation cover decreased, and the saltation flux increased because the wake interference flow became dominant. When the vegetation was spatially homogeneous, however, the saltation flux was suppressed even when the vegetation cover was small. These field experiments show the importance of considering the spatial distribution of vegetation in evaluating saltation occurrence.


Author(s):  
Farsang Andrea ◽  
Barta Károly ◽  
Szatmári József ◽  
Bartus Máté

Kutatásunk során Magyarország két dél-alföldi réti csernozjom talajú területét vizsgáltuk azon céllal, hogy in situ körülmények között számszerűsítsük a különböző szélesemények által okozott talajveszteség mértékét, az ezzel együtt járó humusz- és tápanyagáthalmozás nagyságrendjét, valamint a két terület defláció érzékenységében tapasztalt különbségek okait.Vizsgálati területeink Békés megyében, Makótól K-re mintegy 10 km-re, Apátfalva külterületén, valamint Csongrád megyében Szegedtől ÉNy-ra 2 km-re helyezkedtek el. Kutatásunk célkitűzései az alábbiak voltak: terepi szélcsatornás mérésekre alapozott laboratóriumi mérések alapján különböző szerkezeti állapotú csernozjom talajokra meghatározni◾az indítósebességet,◾a szélerózióval áthalmozott szedimentben mért makroelem, és humuszanyag feldúsulását,◾valamint az ezekre ható talajtani tényezőket.A hasonló mechanikai összetételű, Szeged és Apátfalva melletti réti csernozjom talajok aggregátum összetételében, valamint a CaCO3 és humusztartalomban megfigyelhető különbségek hatására a Szeged melletti csernozjom mintaterület talaja defláció érzékenyebb. A Szegedtől É-ra eső csernozjomokon 6,5–9,0 m s–1 közötti indítósebesség értékeket mértünk, míg Apátfalván 13,0 m s–1 volt az indítósebesség értéke. Az apátfalvi terület talajának magasabb karbonát- és humusztartalma, valamint aggregátum összetételében mért magasabb morzsa arány az indítósebességérték növelésének irányába hat. A feltalajban a 0,5 mm-nél kisebb aggregátumok magasabb aránya következtében nemcsak kisebb indítósebesség értékeket, hanem nagyobb áthalmozódó talajmennyiséget, valamint ezzel együtt nagyobb mennyiségű humusz- és foszfor elmozdulást mértünk az egységesen 10-10 perces fújatási kísérleteink alkalmával a szegedi mintaterületen. Megállapítható tehát, hogy egyazon talajtípusba eső, s azonos textúrájú (homokos vályog) talajok esetében az aggregátum összetételben, valamint a CaCO3 és humusztartalomban megfigyelhető eltérések hatására jelentős különbségek tapasztalhatók a defláció érzékenység, az indítósebesség, a szediment szállítás módja és a humusz- és elemáthalmozás mértéke között.In our research, two Chernozem soil areas were examined in the southern part of the Great Hungarian Plain in order to quantify the amount of the soil loss, humus and nutrient transport caused by different wind events and in order to show the causes of the differences in the sensitivity of deflation between the two areas.Our study areas were located in Békés County, one of them was near Apátfalva, about 10 km east of Makó, and the other one was 2 km northeast of Szeged in Csongrád County. Our in situ wind tunnel experiments were accomplished on 2–4 June 2011 at Apátfalva and in July 2013 in Szeged. The objectives of our research were the followings:◾determination of the enrichment ratios for humus, macro- and microelements in the wind eroded sediments in the case of Chernozem soils with different structures based on field experiments and laboratory measurements;◾determination the affecting actual soil factors;◾estimation of soil loss and element rearrangement trends on Chernozem arable lands under different wind velocity on plot scale.Because of the differences in the aggregate size distribution, CaCO3 and humus content, Chernozem soil near Szeged is more sensitive to deflation than near Apátfalva. Threshold friction velocity was measured between 6.5 and 9.0 m s–1 near Szeged, while the same parameter was 13.0 m s–1 at Apátfalva. The higher carbonate and humus content and the higher crumb ratio of the soil on the Apátfalva area result increasing threshold friction velocity. Due to the higher proportion of aggregates smaller than 0.5 mm in the topsoil, we have measured not only lower threshold friction velocities, but also a larger quantity of transported soil and a larger humus and phosphorus loss during the uniform 10-10 minute long wind tunnel experiments in the Szeged sample area. It can be concluded that even in spite of the same soil type and same texture there are significant differences between deflation sensitivity, threshold friction velocity, sediment transport mode, humus and nutrient transportation because of the significant differences in aggregate size distribution, CaCO3 and humus content.It means that the agronomic structure of the soils greatly influences the mitigation and aggravation of the soil the stress effects caused by climate change. Extreme weather situations have drawn attention to the fact that improperly applied cultivation methods, tools, and overuse of Chernozem soils can modify the soil structure. One of the most serious affect is the dusting of the surface layer of the soil. During this process the larger macroaggregates disintegrate into microaggregates and the resulting smaller fractions are more exposed to wind erosion.The dust load affecting our settlements is mainly originated from arable lands. The mitigation of this emission is fundamentally based on the regulation of land use, farming practices and deflation. “Best Management Practices” (BMPs) mean a group of selected tools that can reduce or eliminate the transport of pollutants from diffuse sources before, during and/or after agricultural activities. However, these diffuse agricultural loads caused by wind erosion can only be quantified if the magnitude and spatial movement of the dust and pollutants is monitored.


Geoderma ◽  
2019 ◽  
Vol 354 ◽  
pp. 113873 ◽  
Author(s):  
I. Kouchami-Sardoo ◽  
H. Shirani ◽  
I. Esfandiarpour-Boroujeni ◽  
J. Álvaro-Fuentes ◽  
H. Shekofteh

2019 ◽  
Vol 12 (3) ◽  
Author(s):  
Marzieh Mirhasani ◽  
Noredin Rostami ◽  
Masoud Bazgir ◽  
Mohsen Tavakoli

Sign in / Sign up

Export Citation Format

Share Document