A combination of Lie group-based high order geometric integrator and delta-shaped basis functions for solving Korteweg–de Vries (KdV) equation

Author(s):  
Murat Polat ◽  
Ömer Oruç

In this work, we develop a novel method to obtain numerical solution of well-known Korteweg–de Vries (KdV) equation. In the novel method, we generate differentiation matrices for spatial derivatives of the KdV equation by using delta-shaped basis functions (DBFs). For temporal integration we use a high order geometric numerical integrator based on Lie group methods. This paper is a first attempt to combine DBFs and high order geometric numerical integrator for solving such a nonlinear partial differential equation (PDE) which preserves conservation laws. To demonstrate the performance of the proposed method we consider five test problems. We reckon [Formula: see text], [Formula: see text] and root mean square (RMS) errors and compare them with other results available in the literature. Besides the errors, we also monitor conservation laws of the KDV equation and we show that the method in this paper produces accurate results and preserves the conservation laws quite good. Numerical outcomes show that the present novel method is efficient and reliable for PDEs.

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Tahir Ayaz ◽  
Farhad Ali ◽  
Wali Khan Mashwani ◽  
Israr Ali Khan ◽  
Zabidin Salleh ◽  
...  

The Korteweg–de Vries (KdV) equation is a weakly nonlinear third-order differential equation which models and governs the evolution of fixed wave structures. This paper presents the analysis of the approximate symmetries along with conservation laws corresponding to the perturbed KdV equation for different classes of the perturbed function. Partial Lagrange method is used to obtain the approximate symmetries and their corresponding conservation laws of the KdV equation. The purpose of this study is to find particular perturbation (function) for which the number of approximate symmetries of perturbed KdV equation is greater than the number of symmetries of KdV equation so that explore something hidden in the system.


Author(s):  
Yvan Martel ◽  
Frank Merle

We review recent nonlinear partial differential equation techniques developed to address questions concerning solitons for the quartic generalized Korteweg—de Vries equation (gKdV) and other generalizations of the KdV equation. We draw a comparison between results obtained in this way and some elements of the classical integrability theory for the original KdV equation, which serve as a reference for soliton and multi-soliton problems. First, known results on stability and asymptotic stability of solitons for gKdV equations are reviewed from several different sources. Second, we consider the problem of the interaction of two solitons for the quartic gKdV equation. We focus on recent results and techniques from a previous paper by the present authors concerning the interaction of two almost-equal solitons.


2016 ◽  
Vol 71 (8) ◽  
pp. 735-740
Author(s):  
Zheng-Yi Ma ◽  
Jin-Xi Fei

AbstractFrom the known Lax pair of the Korteweg–de Vries (KdV) equation, the Lie symmetry group method is successfully applied to find exact invariant solutions for the KdV equation with nonlocal symmetries by introducing two suitable auxiliary variables. Meanwhile, based on the prolonged system, the explicit analytic interaction solutions related to the hyperbolic and Jacobi elliptic functions are derived. Figures show the physical interaction between the cnoidal waves and a solitary wave.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Mustafa Inc ◽  
Ali Akgül ◽  
Adem Kiliçman

We propose a reproducing kernel method for solving the KdV equation with initial condition based on the reproducing kernel theory. The exact solution is represented in the form of series in the reproducing kernel Hilbert space. Some numerical examples have also been studied to demonstrate the accuracy of the present method. Results of numerical examples show that the presented method is effective.


2007 ◽  
Vol 16 (09) ◽  
pp. 3019-3023 ◽  
Author(s):  
D. A. FOGAÇA ◽  
F. S. NAVARRA

We study the conditions for the formation and propagation of Korteweg – de Vries (KdV) solitons in relativistic fluid dynamics using an appropriate equation of state. It is known that in cartesian coordinates the combination of the Euler and continuity equations leads to the KdV equation. Recently it has been shown that this is true also in relativistic hydrodynamics. Here we show that a KdV-like equation can be obtained in relativistic hydrodynamics in spherical coordinates.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1254
Author(s):  
Saima Rashid ◽  
Aasma Khalid ◽  
Sobia Sultana ◽  
Zakia Hammouch ◽  
Rasool Shah ◽  
...  

We put into practice relatively new analytical techniques, the Shehu decomposition method and the Shehu iterative transform method, for solving the nonlinear fractional coupled Korteweg-de Vries (KdV) equation. The KdV equation has been developed to represent a broad spectrum of physics behaviors of the evolution and association of nonlinear waves. Approximate-analytical solutions are presented in the form of a series with simple and straightforward components, and some aspects show an appropriate dependence on the values of the fractional-order derivatives that are, in a certain sense, symmetric. The fractional derivative is proposed in the Caputo sense. The uniqueness and convergence analysis is carried out. To comprehend the analytical procedure of both methods, three test examples are provided for the analytical results of the time-fractional KdV equation. Additionally, the efficiency of the mentioned procedures and the reduction in calculations provide broader applicability. It is also illustrated that the findings of the current methodology are in close harmony with the exact solutions. It is worth mentioning that the proposed methods are powerful and are some of the best procedures to tackle nonlinear fractional PDEs.


1996 ◽  
Vol 74 (9-10) ◽  
pp. 676-684 ◽  
Author(s):  
F. Güngör ◽  
M. Sanielevici ◽  
P. Winternitz

All variable coefficient Korteweg – de Vries (KdV) equations with three-dimensional Lie point symmetry groups are investigated. For such an equation to have the Painlevé property, its coefficients must satisfy seven independent partial differential equations. All of them are satisfied only for equations equivalent to the KdV equation itself. However, most of them are satisfied in all cases. If the symmetry algebra is either simple, or nilpotent, then the equations have families of single-valued solutions depending on two arbitrary functions of time. Symmetry reduction is used to obtain particular solutions. The reduced ordinary differential equations are classified.


Sign in / Sign up

Export Citation Format

Share Document