scholarly journals Thyroid hormones regulate the formation and environmental plasticity of white bars in clownfishes

2021 ◽  
Vol 118 (23) ◽  
pp. e2101634118
Author(s):  
Pauline Salis ◽  
Natacha Roux ◽  
Delai Huang ◽  
Anna Marcionetti ◽  
Pierick Mouginot ◽  
...  

Determining how plasticity of developmental traits responds to environmental conditions is a challenge that must combine evolutionary sciences, ecology, and developmental biology. During metamorphosis, fish alter their morphology and color pattern according to environmental cues. We observed that juvenile clownfish (Amphiprion percula) modulate the developmental timing of their adult white bar formation during metamorphosis depending on the sea anemone species in which they are recruited. We observed an earlier formation of white bars when clownfish developed with Stichodactyla gigantea (Sg) than with Heteractis magnifica (Hm). As these bars, composed of iridophores, form during metamorphosis, we hypothesized that timing of their development may be thyroid hormone (TH) dependent. We treated clownfish larvae with TH and found that white bars developed earlier than in control fish. We further observed higher TH levels, associated with rapid white bar formation, in juveniles recruited in Sg than in Hm, explaining the faster white bar formation. Transcriptomic analysis of Sg recruits revealed higher expression of duox, a dual oxidase implicated in TH production as compared to Hm recruits. Finally, we showed that duox is an essential regulator of iridophore pattern timing in zebrafish. Taken together, our results suggest that TH controls the timing of adult color pattern formation and that shifts in duox expression and TH levels are associated with ecological differences resulting in divergent ontogenetic trajectories in color pattern development.

2017 ◽  
Author(s):  
Linlin Zhang ◽  
Arnaud Martin ◽  
Michael W. Perry ◽  
Karin R.L. van der Burg ◽  
Yuji Matsuoka ◽  
...  

AbstractDespite the variety, prominence, and adaptive significance of butterfly wing patterns surprisingly little known about the genetic basis of wing color diversity. Even though there is intense interest in wing pattern evolution and development, the technical challenge of genetically manipulating butterflies has slowed efforts to functionally characterize color pattern development genes. To identify candidate wing pigmentation genes we used RNA-seq to characterize transcription across multiple stages of butterfly wing development, and between different color pattern elements, in the painted lady butterfly Vanessa cardui. This allowed us to pinpoint genes specifically associated with red and black pigment patterns. To test the functions of a subset of genes associated with presumptive melanin pigmentation we used CRISPR/Cas9 genome editing in four different butterfly genera. pale, Ddc, and yellow knockouts displayed reduction of melanin pigmentation, consistent with previous findings in other insects. Interestingly, however, yellow-d, ebony, and black knockouts revealed that these genes have localized effects on tuning the color of red, brown, and ochre pattern elements. These results point to previously undescribed mechanisms for modulating the color of specific wing pattern elements in butterflies, and provide an expanded portrait of the insect melanin pathway.


Development ◽  
1994 ◽  
Vol 1994 (Supplement) ◽  
pp. 225-233
Author(s):  
H. Frederik Nijhout

The wing patterns of butterflies are made up of an array of discrete pattern elements. Wing patterns evolve through changes in the size, shape and color of these pattern elements. The pattern elements are arranged in several parallel symmetry systems that develop independently from one another. The wing is further compartmentalized for color pattern formation by the wing veins. Pattern development in these compartments is largely independent from that in adjacent compartments. This two-fold compartmentalization of the color pattern (by symmetry systems and wing veins) has resulted in an extremely flexible developmental system that allows each pattern element to vary and evolve independently, without the burden of correlated evolution in other elements. The lack of developmental constraints on pattern evolution may explain why butterflies have diverged so dramatically in their color patterns, and why accurate mimicry has evolved so frequently. This flexible developmental system appears to have evolved from the convergence of two ancient patterning systems that the butterflies inherited from their ancestors. Mapping of various pattern types onto a phylogeny of the Lepidoptera indicates that symmetry systems evolved in several steps from simple spotting patterns. Initially all such patterns were developmentally identical but each became individuated in the immediate ancestors of the butterflies. Compartmentalization by wing veins is found in all Lepidoptera and their sister group the Trichoptera, but affects primarily the ripple patterns that form the background upon which spotting patterns and symmetry systems develop. These background pattern are determined earlier in ontogeny than are the symmetry systems, and the compartmentalization mechanism is presumably no longer active when the latter develop. It appears that both individuation of symmetry systems and compartmentalization by the wing veins began at or near the wing margin. Only the butterflies and their immediate ancestors evolved a pattern formation mechanism that combines the development of a regular array of well-differentiated symmetry systems with the mechanism that compartmentalizes the wing with respect to color pattern formation. The result was an uncoupling of symmetry system development in each wing cell. This, together with the individuation of symmetry systems, yielded an essentially mosaic developmental system of unprecedented permutational flexibility that enabled the great radiation of butterfly wing patterns.


2007 ◽  
Vol 3 (8) ◽  
pp. 530 ◽  
Author(s):  
Diane M. Ramos ◽  
Ant?nia Monteiro

2013 ◽  
Vol 5 (2) ◽  
Author(s):  
Sari B.M. Sembiring ◽  
K.M. Setiawati ◽  
J.H. Hutapea ◽  
W. Subamia

One of marine ornamental fishes which was succeeded on its breeding, from eggs production to larval and juvenile rearing at Institute for Mariculture Research and Development, Gondol was Clown fish, Amphiprion percula. In local name, the fish also known as Biak Clown fish. In culture development, the fish frequently faced the problem on color pattern which was not meet with export demand. The fish should be bright orange and thin black stripe pattern. In this experiment, analysis was conducted to understand the juvenile color variation produced from 3 pairs broodstock. Larvae and juvenile were reared in the indoor hatchery for 2-3 months,then reared at outdoor tanks for other 3-4 months. Amplification of broodstock and juvenile genoms using specific primer for pigment sequens. Parameters observed on juvenile were classified into three color pattern classes i.e., class I (thick black stripe and disperse), class II(thick black stripe), and class III (thin black stripe). Numbers of juvenile analyzed from its pair broodstock and each class were 2-3 fishes. Color perform similarity coefficient was analyzed  molecularly using sequencing. Sequencing process followed: DNA isolation, amplification using   gen Tyr primer, purification PCR product and finally DNA sequencing. Sequencing analyses of PCR product, after alignment  showed that similarity coefficient of color pattern of class I, II, and III between broodstock and juvenile was only 50 %, and phenotipically, color pattern appeared on juvenile were different than its broodstock. The changes of color perform on Clown fish also affected by interaction between genotype and environment and feed pigment concentration.Keywords:  heredity, color pattern, Tyr gene, clown fish, A. percula


1988 ◽  
Vol 62 (01) ◽  
pp. 83-87 ◽  
Author(s):  
Patricia H. Kelley ◽  
Charles T. Swann

The excellent preservation of the molluscan fauna from the Gosport Sand (Eocene) at Little Stave Creek, Alabama, has made it possible to describe the preserved color patterns of 15 species. In this study the functional significance of these color patterns is tested in the context of the current adaptationist controversy. The pigment of the color pattern is thought to be a result of metabolic waste disposal. Therefore, the presence of the pigment is functional, although the patterns formed by the pigment may or may not have been adaptive. In this investigation the criteria proposed by Seilacher (1972) for testing the functionality of color patterns were applied to the Gosport fauna and the results compared with life mode as interpreted from knowledge of extant relatives and functional morphology. Using Seilacher's criteria of little ontogenetic and intraspecific variability, the color patterns appear to have been functional. However, the functional morphology studies indicate an infaunal life mode which would preclude functional color patterns. Particular color patterns are instead interpreted to be the result of historical factors, such as multiple adaptive peaks or random fixation of alleles, or of architectural constraints including possibly pleiotropy or allometry. The low variability of color patterns, which was noted within species and genera, suggests that color patterns may also serve a useful taxonomic purpose.


2020 ◽  
Vol 10 (4) ◽  
pp. 93-97
Author(s):  
Anil Kumar A ◽  
Raja Sheker K ◽  
Naveen B ◽  
Abhilash G ◽  
Akila CR

Seas assets that give us a variety of characteristic items to control bacterial, contagious and viral ailment and mostly utilized for malignancy chemotherapy practically from spineless creatures, for example, bryozoans, wipes, delicate corals, coelenterates, ocean fans, ocean bunnies, molluscs and echinoderms. In the previous 30 - 40 years, marine plants and creatures have been the focal point of overall endeavours to characterize the regular results of the marine condition. Numerous marine characteristic items have been effectively exceptional to the last phases of clinical preliminaries, including dolastatin-10, a group of peptides disengaged from Indian ocean rabbit, Dollabella auricularia. Ecteinascidin-743 from mangrove tunicate Ecteinascidia turbinata, Didemnins was isolated from Caribbean tunicate Trididemnum solidum and Conopeptides from cone snails (Conus sp.), and a developing number of up-and-comers have been chosen as promising leads for expanded pre-clinical appraisals. Sea anemones possess numerous tentacles containing stinging cells or cnidocytes. The stinging cells are equipped with small organelles known as nematocysts. The two species of sea anemones namely, Heteractis magnificaandStichodactyla haddoni, were collected from Mandapam coastal waters of Ramanathapuram district, Tamilnadu, India. The Nematocyst was collected and centrifuged, and the supernatant was lyophilized and stored for further analysis. The amount of protein from Heteractis Magnifica and Stichodactyla haddoni was estimated. The crude extract has shown haemolytic activity on chicken blood and goat blood. In the antibacterial activity of the sea anemone against six bacterial strains Staphylococcus aureus, Salmonella typhii, Salmonella paratyphii, Klebsiella pneumonia, Vibrio cholerae, Pseudomonas aeruginosa. Antibacterial activity of H. Magnifica and S.haddoni was measured as the radius of the zone of inhibition.


Sign in / Sign up

Export Citation Format

Share Document