heteractis magnifica
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 5)

H-INDEX

10
(FIVE YEARS 0)

2021 ◽  
Vol 118 (23) ◽  
pp. e2101634118
Author(s):  
Pauline Salis ◽  
Natacha Roux ◽  
Delai Huang ◽  
Anna Marcionetti ◽  
Pierick Mouginot ◽  
...  

Determining how plasticity of developmental traits responds to environmental conditions is a challenge that must combine evolutionary sciences, ecology, and developmental biology. During metamorphosis, fish alter their morphology and color pattern according to environmental cues. We observed that juvenile clownfish (Amphiprion percula) modulate the developmental timing of their adult white bar formation during metamorphosis depending on the sea anemone species in which they are recruited. We observed an earlier formation of white bars when clownfish developed with Stichodactyla gigantea (Sg) than with Heteractis magnifica (Hm). As these bars, composed of iridophores, form during metamorphosis, we hypothesized that timing of their development may be thyroid hormone (TH) dependent. We treated clownfish larvae with TH and found that white bars developed earlier than in control fish. We further observed higher TH levels, associated with rapid white bar formation, in juveniles recruited in Sg than in Hm, explaining the faster white bar formation. Transcriptomic analysis of Sg recruits revealed higher expression of duox, a dual oxidase implicated in TH production as compared to Hm recruits. Finally, we showed that duox is an essential regulator of iridophore pattern timing in zebrafish. Taken together, our results suggest that TH controls the timing of adult color pattern formation and that shifts in duox expression and TH levels are associated with ecological differences resulting in divergent ontogenetic trajectories in color pattern development.



Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Audet-Gilbert Émie ◽  
Sylvain François-Étienne ◽  
Bouslama Sidki ◽  
Derome Nicolas

Abstract Background One of the most charismatic, and yet not completely resolved example of mutualistic interaction is the partnership of clownfish and its symbiotic sea anemone. The mechanism explaining this tolerance currently relies on the molecular mimicry of clownfish epithelial mucus, which could serve as camouflage, preventing the anemone's nematocysts' discharge. Resident bacteria are known as key drivers of epithelial mucus chemical signature in vertebrates. A recent study has proposed a restructuration of the skin microbiota in a generalist clown fish when first contacting its symbiotic anemone. We explored a novel hypothesis by testing the effect of remote interaction on epithelial microbiota restructuration in both partners. Methods With metataxonomics, we investigated the epithelial microbiota dynamic of 18 pairs of percula clownfish (Amphiprion percula) and their symbiotic anemone Heteractis magnifica in remote interaction, physical interaction and control groups for both partners during a 4-week trial. Results The Physical and Remote Interaction groups’ results evidence gradual epithelial microbiota convergence between both partners when fish and anemone were placed in the same water system. This convergence occurred preceding any physical contact between partners, and was maintained during the 2-week interaction period in both contact groups. After the interaction period, community structure of both fish and anemone’s epthelial community structures maintained the interaction signature 2 weeks after fish–anemone pairs’ separation. Furthermore, the interaction signature persistence was observed both in the Physical and Remote Interaction groups, thus suggesting that water-mediated chemical communication between symbiotic partners was strong enough to shift the skin microbiota durably, even after the separation of fish–anemone pairs. Finally, our results suggest that fish–anemone convergent microbiota restructuration was increasingly associated with the parallel recruitment of three Flavobacteriaceae strains closely related to a tyrosinase-producing Cellulophaga tyrosinoxydans. Conclusions Our study shows that bacterial community restructuration, in the acclimation process, does not only rely on direct physical contact. Furthermore, our results challenge, for the first time, the traditional unidirectional chemical camouflage hypothesis, as we argue that convergence of the epithelial microbiota of both partners may play essential roles in establishing mutual acceptance.



2021 ◽  
Author(s):  
Émie Audet-Gilbert ◽  
François-Étienne Sylvain ◽  
Sidki Bouslama ◽  
Nicolas Derome

Abstract BackgroundOne of the most charismatic, and yet not completely resolved example of mutualistic interaction is the partnership of clownfish and its symbiotic sea anemone. The mechanism explaining this tolerance currently relies on the molecular mimicry of clownfish epithelial mucus, which could serve as camouflage, preventing the anemone's nematocysts' discharge. Resident bacteria are known as key drivers of epithelial mucus chemical signature in vertebrates. A recent study has proposed a restructuration of the skin microbiota in a generalist clown fish when first contacting its symbiotic anemone. We explored a novel hypothesis by testing the effect of remote interaction on epithelial microbiota restructuration in both partners. MethodsWith metataxonomics, we investigated the epithelial microbiota dynamic of 18 pairs of percula clownfish (Amphiprion percula) and their symbiotic anemone Heteractis magnifica in remote interaction, physical interaction and control groups for both partners during a four weeks trial.ResultsPhysical and Remote Interaction groups’ results evidence gradual epithelial microbiota convergence between both partners when fish and anemone were placed in the same water system. This convergence occurred preceding any physical contact between partners, and was maintained during the two-weeks interaction period in both contact groups. After the interaction period, community structure of both fish and anemone’s epthelial community structures maintained the interaction signature two weeks after fish-anemone pairs separation. Furthermore, the interaction signature persistence was observed both in Physical and Remote Interaction groups, thus suggesting that water-mediated chemical communication between symbiotic partners was strong enough to shift the skin microbiota durably, even after the separation of fish-anemone pairs. Finally, our results suggest that fish-anemone convergent microbiota restructuration was increasingly associated with the parallel recruitment of three Flavobacteriaceae strains closely related to a tyrosinase-producing Cellulophaga tyrosinoxydans. ConclusionsOur study shows that bacterial community restructuration, in the acclimation process, does not only rely on direct physical contact. Furthermore, our results challenge, for the first time, the traditional unidirectional chemical camouflage hypothesis, as we argue that convergence of the epithelial microbiota of both partners may play essential roles in establishing mutual acceptance.



2021 ◽  
Author(s):  
Émie Audet-Gilbert ◽  
François-Étienne Sylvain ◽  
Sidki Bouslama ◽  
Nicolas Derome

Abstract BackgroundOne of the most charismatic, and yet not completely resolved example of mutualistic interaction is the partnership of clownfish and its symbiotic sea anemone. The mechanism explaining this tolerance currently relies on the molecular mimicry of clownfish epithelial mucus, which could serve as camouflage, preventing the anemone's nematocysts' discharge. Resident bacteria are known as key drivers of epithelial mucus chemical signature in vertebrates. A recent study has proposed a restructuration of the skin microbiota in a generalist clown fish when first contacting its symbiotic anemone. We explored a novel hypothesis by testing the effect of remote interaction on epithelial microbiota restructuration in both partners. MethodsWith metataxonomics, we investigated the epithelial microbiota dynamic of 18 pairs of percula clownfish (Amphiprion percula) and their symbiotic anemone Heteractis magnifica in remote interaction, physical interaction and control groups for both partners during a four weeks trial.ResultsPhysical and Remote Interaction groups’ results evidence gradual epithelial microbiota convergence between both partners when fish and anemone were placed in the same water system. This convergence occurred preceding any physical contact between partners, and was maintained during the two-weeks interaction period in both contact groups. After the interaction period, community structure of both fish and anemone’s epthelial community structures maintained the interaction signature two weeks after fish-anemone pairs separation. Furthermore, the interaction signature persistence was observed both in Physical and Remote Interaction groups, thus suggesting that water-mediated chemical communication between symbiotic partners was strong enough to shift the skin microbiota durably, even after the separation of fish-anemone pairs. Finally, our results suggest that fish-anemone convergent microbiota restructuration was increasingly associated with the parallel recruitment of three Flavobacteriaceae strains closely related to a tyrosinase-producing Cellulophaga tyrosinoxydans. ConclusionsOur study shows that bacterial community restructuration, in the acclimation process, does not only rely on direct physical contact. Furthermore, our results challenge, for the first time, the traditional unidirectional chemical camouflage hypothesis, as we argue that convergence of the epithelial microbiota of both partners may play essential roles in establishing mutual acceptance.



2021 ◽  
Author(s):  
Émie Audet-Gilbert ◽  
François-Étienne Sylvain ◽  
Sidki Bouslama ◽  
Nicolas Derome

Abstract BackgroundOne of the most charismatic, and yet not completely resolved example of mutualistic interaction is the partnership of clownfish and its symbiotic sea anemone. The mechanism explaining this tolerance currently relies on the molecular mimicry of clownfish epithelial mucus, which could serve as camouflage, preventing the anemone's nematocysts' discharge. Resident bacteria are known as key drivers of epithelial mucus chemical signature in vertebrates. A recent study has proposed a restructuration of the skin microbiota in a generalist clown fish when first contacting its symbiotic anemone. We explored a novel hypothesis by testing the effect of remote interaction on epithelial microbiota restructuration in both partners. MethodsWith metataxonomics, we investigated the epithelial microbiota dynamic of 18 pairs of percula clownfish (Amphiprion percula) and their symbiotic anemone Heteractis magnifica in remote interaction, physical interaction and control groups for both partners during a four weeks trial.ResultsPhysical and Remote Interaction groups’ results evidence gradual epithelial microbiota convergence between both partners when fish and anemone were placed in the same water system. This convergence occurred preceding any physical contact between partners, and was maintained during the two-weeks interaction period in both contact groups. After the interaction period, community structure of both fish and anemone’s epthelial community structures maintained the interaction signature two weeks after fish-anemone pairs separation. Furthermore, the interaction signature persistence was observed both in Physical and Remote Interaction groups, thus suggesting that water-mediated chemical communication between symbiotic partners was strong enough to shift the skin microbiota durably, even after the separation of fish-anemone pairs. Finally, our results suggest that fish-anemone convergent microbiota restructuration was increasingly associated with the parallel recruitment of three Flavobacteriaceae strains closely related to a tyrosinase-producing Cellulophaga tyrosinoxydans. ConclusionsOur study shows that bacterial community restructuration, in the acclimation process, does not only rely on direct physical contact. Furthermore, our results challenge, for the first time, the traditional unidirectional chemical camouflage hypothesis, as we argue that convergence of the epithelial microbiota of both partners may play essential roles in establishing mutual acceptance.



2020 ◽  
Vol 10 (4) ◽  
pp. 93-97
Author(s):  
Anil Kumar A ◽  
Raja Sheker K ◽  
Naveen B ◽  
Abhilash G ◽  
Akila CR

Seas assets that give us a variety of characteristic items to control bacterial, contagious and viral ailment and mostly utilized for malignancy chemotherapy practically from spineless creatures, for example, bryozoans, wipes, delicate corals, coelenterates, ocean fans, ocean bunnies, molluscs and echinoderms. In the previous 30 - 40 years, marine plants and creatures have been the focal point of overall endeavours to characterize the regular results of the marine condition. Numerous marine characteristic items have been effectively exceptional to the last phases of clinical preliminaries, including dolastatin-10, a group of peptides disengaged from Indian ocean rabbit, Dollabella auricularia. Ecteinascidin-743 from mangrove tunicate Ecteinascidia turbinata, Didemnins was isolated from Caribbean tunicate Trididemnum solidum and Conopeptides from cone snails (Conus sp.), and a developing number of up-and-comers have been chosen as promising leads for expanded pre-clinical appraisals. Sea anemones possess numerous tentacles containing stinging cells or cnidocytes. The stinging cells are equipped with small organelles known as nematocysts. The two species of sea anemones namely, Heteractis magnificaandStichodactyla haddoni, were collected from Mandapam coastal waters of Ramanathapuram district, Tamilnadu, India. The Nematocyst was collected and centrifuged, and the supernatant was lyophilized and stored for further analysis. The amount of protein from Heteractis Magnifica and Stichodactyla haddoni was estimated. The crude extract has shown haemolytic activity on chicken blood and goat blood. In the antibacterial activity of the sea anemone against six bacterial strains Staphylococcus aureus, Salmonella typhii, Salmonella paratyphii, Klebsiella pneumonia, Vibrio cholerae, Pseudomonas aeruginosa. Antibacterial activity of H. Magnifica and S.haddoni was measured as the radius of the zone of inhibition.



2020 ◽  
Author(s):  
Émie Audet Gilbert ◽  
François-Étienne Sylvain ◽  
Sidki Bouslama ◽  
Nicolas Derome

Abstract BackgroundOne of the most charismatic, and yet not completely resolved example of mutualistic interaction is the partnership of clownfish and its symbiotic sea anemone. The mechanism explaining this tolerance currently relies on the molecular mimicry of clownfish epithelial mucus, which could serve as camouflage, preventing the anemone's nematocysts' discharge. Resident bacteria are known as key drivers of epithelial mucus chemical signature in vertebrates. A recent study has proposed a restructuration of the skin microbiota in a generalist clown fish when first contacting its symbiotic anemone. We explored a novel hypothesis by testing the effect of remote interaction on epithelial microbiota restructuration in both partners. MethodsWith metataxonomics, we investigated the epithelial microbiota dynamic of 18 pairs of percula clownfish (Amphiprion percula) and their symbiotic anemone Heteractis magnifica in remote interaction, physical interaction and control groups for both partners during a four weeks trial.ResultsPhysical and Remote Interaction groups’ results evidence gradual epithelial microbiota convergence between both partners when fish and anemone were placed in the same water system. This convergence occurred preceding any physical contact between partners, and was maintained during the two-weeks interaction period in both contact groups. After the interaction period, community structure of both fish and anemone’s epthelial community structures maintained the interaction signature two weeks after fish-anemone pairs separation. Furthermore, the interaction signature persistence was observed both in Physical and Remote Interaction groups, thus suggesting that water-mediated chemical communication between symbiotic partners was strong enough to shift the skin microbiota durably, even after the separation of fish-anemone pairs. Finally, our results suggest that fish-anemone convergent microbiota restructuration was increasingly associated with the parallel recruitment of three Flavobacteriaceae strains closely related to a tyrosinase-producing Cellulophaga tyrosinoxydans. ConclusionsOur study shows that bacterial community restructuration, in the acclimation process, does not only rely on direct physical contact. Furthermore, our results challenge, for the first time, the traditional unidirectional chemical camouflage hypothesis, as we argue that convergence of the epithelial microbiota of both partners may play essential roles in establishing mutual acceptance.



2020 ◽  
Author(s):  
Émie Audet Gilbert ◽  
François-Étienne Sylvain ◽  
Sidki Bouslama ◽  
Nicolas Derome

Abstract BackgroundOne of the most charismatic, and yet not completely resolved example of mutualistic interaction is the partnership of clownfish and its symbiotic sea anemone. The mechanism explaining this tolerance currently relies on the molecular mimicry of clownfish epithelial mucus, which could serve as camouflage, preventing the anemone's nematocysts' discharge. Resident bacteria are known as key drivers of epithelial mucus chemical signature in vertebrates. A recent study has proposed a restructuration of the skin microbiota in a generalist clown fish when first contacting its symbiotic anemone. We explored a novel hypothesis by testing the effect of remote interaction on epithelial microbiota restructuration in both partners. MethodsWith metataxonomics, we investigated the epithelial microbiota dynamic of 18 pairs of percula clownfish (Amphiprion percula) and their symbiotic anemone Heteractis magnifica in remote interaction, physical interaction and control groups for both partners during a four weeks trial.ResultsPhysical and Remote Interaction groups’ results evidence gradual epithelial microbiota convergence between both partners when fish and anemone were placed in the same water system. This convergence occurred preceding any physical contact between partners, and was maintained during the two-weeks interaction period in both contact groups. After the interaction period, community structure of both fish and anemone’s epthelial community structures maintained the interaction signature two weeks after fish-anemone pairs separation. Furthermore, the interaction signature persistence was observed both in Physical and Remote Interaction groups, thus suggesting that water-mediated chemical communication between symbiotic partners was strong enough to shift the skin microbiota durably, even after the separation of fish-anemone pairs. Finally, our results suggest that fish-anemone convergent microbiota restructuration was increasingly associated with the parallel recruitment of three Flavobacteriaceae strains closely related to a tyrosinase-producing Cellulophaga tyrosinoxydans. ConclusionsOur study shows that bacterial community restructuration, in the acclimation process, does not only rely on direct physical contact. Furthermore, our results challenge, for the first time, the traditional unidirectional chemical camouflage hypothesis, as we argue that convergence of the epithelial microbiota of both partners may play essential roles in establishing mutual acceptance.



2019 ◽  
Vol 489 (4) ◽  
pp. 429-432
Author(s):  
O. V. Sintsova ◽  
E. V. Leychenko ◽  
I. N. Gladkikh ◽  
A. P. Kalinovskii ◽  
M. M. Monastyrnaya ◽  
...  

Recombinant analog of sea anemone Heteractis magnifica peptide was obtained and kinetic parameters of its interaction with mammalian -amylases were determined. Magnificamide inhibits -amylases significantly stronger than a medical drug acarbose (PrecoseTM or GlucobayTM). Magnificamide is assumed to find application as a drug for prevention and treatment of metabolic disorders and type 2 diabetes mellitus.



2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Natacha Roux ◽  
Raphaël Lami ◽  
Pauline Salis ◽  
Kévin Magré ◽  
Pascal Romans ◽  
...  

AbstractClownfishes and sea anemones form an intriguing long-term association, but the mechanism underlying this symbiosis is not well understood. Since clownfishes seem to cover themselves with sea anemone mucus, we investigated the microbiomes of the two partners to search for possible shifts in their compositions. We used a 16S rRNA gene sequencing strategy to study the dynamics of the microbiota during the association between the clownfish Amphiprion ocellaris and its host Heteractis magnifica under laboratory conditions. The experiment conducted in aquaria revealed that both clownfish and sea anemone mucus had specific signatures compared to artificial sea water. The microbiomes of both species were highly dynamic during the initiation of the symbiosis and for up to seven days after contact. Three families of bacteria (Haliangiaceae, Pseudoalteromonadacae, Saprospiracae) were shared between the two organisms after symbiosis. Once the symbiosis had been formed, the clownfishes and sea anemone then shared some communities of their mucus microbiota. This study paves the way for further investigations to determine if similar microbial signatures exist in natural environments, whether such microbial sharing can be beneficial for both organisms, and whether the microbiota is implicated in the mechanisms that protect the clownfish from sea anemone stinging.



Sign in / Sign up

Export Citation Format

Share Document