scholarly journals Simulation of Landing and Take-Off Noise for Supersonic Transport Aircraft at a Conceptual Design Fidelity Level

Aerospace ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 9
Author(s):  
Michel Nöding ◽  
Martin Schuermann ◽  
Lothar Bertsch ◽  
Marc Koch ◽  
Martin Plohr ◽  
...  

The German Aerospace Center has launched an internal project to assess the noise impact associated with supersonic transport aircraft during approach and departure. A dedicated simulation process is established to cover all relevant disciplines, i.e., aircraft and engine design, engine installation effects, flight simulation, and system noise prediction. The core of the simulation process is comprised of methods at the complexity and fidelity level of conceptual aircraft design, i.e., typical overall aircraft design methods and a semi-empirical approach for the noise modeling. Dedicated interfaces allow to process data from high fidelity simulation that will support or even replace initial low fidelity results in the long run. All of the results shown and discussed in this study are limited to the fidelity level of conceptual design. The application of the simulation process to the NASA 55t Supersonic Technology Concept Aeroplane, i.e., based on non-proprietary data for this vehicle, yields similar noise level predictions when compared to the published NASA results. This is used as an initial feasibility check of the new process and confirms the underlying methods and models. Such an initial verification of the process is understood as an essential step due to the lack of available noise data for supersonic transport aircraft in general. The advantageous effect of engine noise shielding on the resulting system noise is demonstrated based on predicted level time histories and certification noise levels. After this initial verification, the process is applied to evaluate a conceptual supersonic transport design based on a PhD thesis with two engines mounted under the wing, which is referred to as aircraft TWO. Full access to this vehicle’s design and performance data allows to investigate the influence of flight procedures on the resulting noise impact along approach and departure. These noise results are then assembled according to proposed Federal Aviation Agency regulations in their Notice of Proposed Rulemaking, e.g., speed limitations, for Supersonic transport noise certification and the regulations from Noise Chapters of the Annex 16 from the International Civil Aviation Organization in order to evaluate the resulting levels as a function of the flight procedure.

2020 ◽  
Vol 92 (7) ◽  
pp. 981-992
Author(s):  
Stefan Kazula ◽  
Mark Wöllner ◽  
Klaus Höschler

Purpose This paper aims to reveal the influence of selected geometric parameters on the aerodynamic performance of circular variable aero engine inlets in transonic and supersonic civil aviation. Design/methodology/approach The trade-off in inlet design and aerodynamic evaluation parameters is presented. The approach to investigate the dependencies between the aerodynamic and geometric parameters at different flight conditions by means of a parametric design study is introduced. Findings The dependencies of inlet drag and efficiency from geometric parameters at flight speeds of Mach 0.95 up to Mach 1.6 are identified. Although entailing additional weight, the inlet length represents the parameter with the highest potential for drag reduction by up to 50% in the selected design space. Ideal geometries for variable pitot inlets are determined. After considering weight, their potential range benefit nearly disappears for subsonic applications, but remains above 20% for supersonic flight at Mach 1.6. Originality/value Hence, the technology of circular variable pitot inlets for supersonic transport aircraft could be a way to achieve the ambitious ecological, safety and economic goals for future civil aviation.


2006 ◽  
Vol 110 (1113) ◽  
pp. 705-721 ◽  
Author(s):  
R. K. Nangia

Summary As civil aviation expands, environmental aspects and fuel savings are becoming increasingly important. Amongst technologies proposed for more efficient flight, air-to-air refuelling (AAR), ‘hopping’ and flying in close formation (drag reduction), all have significant possibilities. It will be interesting to know also how these technologies may co-exist e.g. AAR and formation flying. In military use, AAR is virtually indispensable. Its benefits are real and largely proven in hostile and demanding scenarios. We present a case for applying AAR in a civil context to show that substantial reductions in fuel burn for long-range missions are achievable. Overall savings, including the fuel used during the tanker missions, would be of the order of 30-40% fuel and 35-40% financial. These are very significant in terms of the impact on aviation’s contribution to reducing atmospheric pollution. AAR allows smaller, efficient (greener) aircraft optimised for about 3,000nm range to fulfil long-range route requirements. This implies greater usage of smaller airports, relieving congestion and ATC demands on Hub airports. Problems due to shed vortices and wakes at airports are reduced. Smaller engines will be needed. Integrated (accepted) AAR could lead to further benefits. Aircraft could take-off ‘light’, with minimum fuel and reserves and a planned AAR a few minutes into the flight. The ‘light’ aircraft would not require over-rating of the engines during take-off and would therefore be less noisy during take-off and climb-out, permitting more acceptable night operations. The availability of civil AAR will enable opportunities for hitherto borderline technologies to be utilised in future aircraft. Laminar flow will provide fuel savings and increased efficiency in its own right but could be significantly enhanced within a civil AAR environment. Similarly, supersonic transport may become an acceptable economic option. AAR affords the possibility of a complete widening of the design space and this should appeal to the imagination of current and future designers.


Aerospace ◽  
2021 ◽  
Vol 8 (8) ◽  
pp. 210
Author(s):  
Michel Nöding ◽  
Lothar Bertsch

ICAO Annex 16 regulations are used to certify the acoustic performance of subsonic transport aircraft. Each aircraft is classified according to the measured EPNL levels at specific certification locations along the approach and departure. By simulating this certification process, it becomes possible to identify all relevant parameters and assess promising measures to reduce the noise certification levels in compliance with the underlying ICAO regulations, i.e., allowable operating conditions of the aircraft. Furthermore, simulation is the only way to enable an assessment of novel technology and non-existing vehicle concepts, which is the main motivation behind the presented research activities. Consequently, the ICAO Annex 16 regulations are integrated into an existing noise simulation framework at DLR, and the virtual noise certification of novel aircraft concepts is realized at the conceptual design phase. The predicted certification levels can be directly selected as design objectives in order to realize an advantageous ICAO noise category for a new aircraft design, i.e., simultaneously accounting for the design and the resulting flight performance. A detailed assessment and identification of operational limits and allowable flight procedures for each conceptual aircraft design under consideration is enabled. Sensitivity studies can be performed for the relevant input parameters that influence the predicted noise certification levels. Specific noise sources with a dominating impact on the certification noise levels can be identified, and promising additional low-noise measures can be applied within the conceptual design phase. The overall simulation process is applied to existing vehicles in order to assess the validity of the simulation resultsfcompared to published data. Thereafter, the process is applied to some DLR low-noise aircraft concepts to evaluate their noise certification levels. These results can then be compared to other standard noise metrics that are typically applied in order to describe aircraft noise, e.g., SEL isocontour areas. It can be demonstrated that certain technologies can significantly reduce the noise impact along most of an approach or departure flight track but have only a limited influence on the noise certification levels and vice versa. Finally, an outlook of the ongoing developments is provided, in order to apply the new simulation process to supersonic aircraft. Newly proposed regulations for such concepts are implemented into the process in order to evaluate these new regulations and enable direct comparison with existing regulations.


2007 ◽  
Vol 111 (1123) ◽  
pp. 589-592 ◽  
Author(s):  
R. K. Nangia

The aircraft industry, as a whole, is striving to limit its impact on the environment. Improved engine design and operation may offer a reduction in emissions of a few percent. More efficient air traffic control (ATC) may offer a limited reduction in overall fuel burn. Improvements in aerodynamic design and materials available (e.g. on A350XWB, B787) might achieve a few percent increases in efficiencies. The use of alternative fuels is some way off. The ACARE objectives present a stiff challenge. Our recent studies have shown that air-to-air-refuelling (AAR), well established in military circles, introduced to civil aircraft operations would provide fuel savings of the order of 30% – 40%. AAR will allow smaller (3,000nm range), more efficient (greener) aircraft, operating from shorter runways, to fulfil long-range route requirements. In addition, the ‘safety-net’ afforded by the availability of AAR will enable a host of hitherto borderline technologies to be accepted and utilised in future aircraft designs. Laminar flow will provide fuel savings and increased efficiency in its own right provided it is enabled within a civil AAR environment. Similarly, supersonic transport becomes an acceptable economic option.


Sign in / Sign up

Export Citation Format

Share Document