dicobalt octacarbonyl
Recently Published Documents


TOTAL DOCUMENTS

226
(FIVE YEARS 0)

H-INDEX

33
(FIVE YEARS 0)

ChemistryOpen ◽  
2020 ◽  
Author(s):  
Ralf Schuster ◽  
Tobias Wähler ◽  
Miroslav Kettner ◽  
Friederike Agel ◽  
Tanja Bauer ◽  
...  


Author(s):  
Tse‐Lok Ho ◽  
Mary Fieser ◽  
Louis Fieser


Proceedings ◽  
2019 ◽  
Vol 22 (1) ◽  
pp. 62
Author(s):  
Roman Dembinski ◽  
Renata Kaczmarek ◽  
Dariusz Korczyński ◽  
Karolina Królewska-Golińska

In continuation of synthetic pursuit of metallo-nucleosides, in particular dicobalt hexacarbonyl 5-alkynyl-2′-deoxyuridines, novel compounds with alkynyl groups were synthesized, starting from 5-iodo-2′-deoxyuridine. Reactions of dicobalt octacarbonyl [Co2(CO)8] with 2′-deoxy-5-oxopropynyluridines and related compounds gave dicobalt hexacarbonyl nucleoside complexes (83–31%). The growth inhibition of HeLa and K562 cancer cell lines by organometallic nucleosides was examined and compared to that by alkynyl nucleoside precursors. Coordination of the dicobalt carbonyl moiety to the 2′-deoxy-5-alkynyluridines led to a significant increase in its cytotoxic potency. The cobalt compounds antiproliferative activities against the HeLa cell line and the K562 cell line will be described. Coordination of an acetyl-substituted cobalt nucleoside was expanded using the 1,1-bis(diphenylphosphino)methane (dppm) ligand, resulting in cytotoxicity at comparable levels. The formation of reactive oxygen species in the presence of cobalt compounds was determined in K562 cells. The results indicate that the mechanism of action for most antiproliferative cobalt compounds may be related to the induction of oxidative stress.



2018 ◽  
Vol 47 (43) ◽  
pp. 15353-15363 ◽  
Author(s):  
Ryan L. Hollingsworth ◽  
Jeffrey W. Beattie ◽  
Amanda Grass ◽  
Philip D. Martin ◽  
Stanislav Groysman ◽  
...  

Reactivity of dicobalt octacarbonyl with dinucleating and mononucleating redox-active bis(imino)pyridines is investigated.





2016 ◽  
Vol 23 (2) ◽  
pp. 321-328 ◽  
Author(s):  
David R. Diercks ◽  
Brian P. Gorman ◽  
Johannes J. L. Mulders

AbstractSix precursors were evaluated for use as in situ electron beam-induced deposition capping layers in the preparation of atom probe tomography specimens with a focus on near-surface features where some of the deposition is retained at the specimen apex. Specimens were prepared by deposition of each precursor onto silicon posts and shaped into sub-70-nm radii needles using a focused ion beam. The utility of the depositions was assessed using several criteria including composition and uniformity, evaporation behavior and evaporation fields, and depth of Ga+ ion penetration. Atom probe analyses through depositions of methyl cyclopentadienyl platinum trimethyl, palladium hexafluoroacetylacetonate, and dimethyl-gold-acetylacetonate [Me2Au(acac)] were all found to result in tip fracture at voltages exceeding 3 kV. Examination of the deposition using Me2Au(acac) plus flowing O2 was inconclusive due to evaporation of surface silicon from below the deposition under all analysis conditions. Dicobalt octacarbonyl [Co2(CO)8] and diiron nonacarbonyl [Fe2(CO)9] depositions were found to be effective as in situ capping materials for the silicon specimens. Their very different evaporation fields [36 V/nm for Co2(CO)8 and 21 V/nm for Fe2(CO)9] provide options for achieving reasonably close matching of the evaporation field between the capping material and many materials of interest.



2016 ◽  
Vol 22 (7) ◽  
Author(s):  
Bing Xu ◽  
Qian-Shu Li ◽  
Yaoming Xie ◽  
R. Bruce King




2015 ◽  
Vol 21 (3) ◽  
pp. 557-563 ◽  
Author(s):  
Björn Pfeiffer ◽  
Torben Erichsen ◽  
Eike Epler ◽  
Cynthia A. Volkert ◽  
Piet Trompenaars ◽  
...  

AbstractA method to characterize open-cell nanoporous materials with atom probe tomography (APT) has been developed. For this, open-cell nanoporous gold with pore diameters of around 50 nm was used as a model system, and filled by electron beam-induced deposition (EBID) to obtain a compact material. Two different EBID precursors were successfully tested—dicobalt octacarbonyl [Co2(CO)8] and diiron nonacarbonyl [Fe2(CO)9]. Penetration and filling depth are sufficient for focused ion beam-based APT sample preparation. With this approach, stable APT analysis of the nanoporous material can be performed. Reconstruction reveals the composition of the deposited precursor and the nanoporous material, as well as chemical information of the interfaces between them. Thus, it is shown that, using an appropriate EBID process, local chemical information in three dimensions with sub-nanometer resolution can be obtained from nanoporous materials using APT.



Sign in / Sign up

Export Citation Format

Share Document