scholarly journals Organometallic Nucleosides: Synthesis and Biological Evaluation of Substituted Dicobalt Hexacarbonyl Alkynyl Modified 2′-Deoxyuridines

Proceedings ◽  
2019 ◽  
Vol 22 (1) ◽  
pp. 62
Author(s):  
Roman Dembinski ◽  
Renata Kaczmarek ◽  
Dariusz Korczyński ◽  
Karolina Królewska-Golińska

In continuation of synthetic pursuit of metallo-nucleosides, in particular dicobalt hexacarbonyl 5-alkynyl-2′-deoxyuridines, novel compounds with alkynyl groups were synthesized, starting from 5-iodo-2′-deoxyuridine. Reactions of dicobalt octacarbonyl [Co2(CO)8] with 2′-deoxy-5-oxopropynyluridines and related compounds gave dicobalt hexacarbonyl nucleoside complexes (83–31%). The growth inhibition of HeLa and K562 cancer cell lines by organometallic nucleosides was examined and compared to that by alkynyl nucleoside precursors. Coordination of the dicobalt carbonyl moiety to the 2′-deoxy-5-alkynyluridines led to a significant increase in its cytotoxic potency. The cobalt compounds antiproliferative activities against the HeLa cell line and the K562 cell line will be described. Coordination of an acetyl-substituted cobalt nucleoside was expanded using the 1,1-bis(diphenylphosphino)methane (dppm) ligand, resulting in cytotoxicity at comparable levels. The formation of reactive oxygen species in the presence of cobalt compounds was determined in K562 cells. The results indicate that the mechanism of action for most antiproliferative cobalt compounds may be related to the induction of oxidative stress.

ChemInform ◽  
2010 ◽  
Vol 29 (8) ◽  
pp. no-no
Author(s):  
C. J. LOVELY ◽  
A. S. BHAT ◽  
H. D. COUGHENOUR ◽  
N. E. GILBERT ◽  
R. W. BRUEGGEMEIER

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Miao Zhang ◽  
Lin Guo ◽  
Long-Fei Lin ◽  
Chang-Hai Qu ◽  
Xing-Bin Yin ◽  
...  

Realgar and indigo naturalis are clinically combined to treat varieties of leukemia. Exploring the drug-drug interactions might be beneficial to find active substances and develop new targeted drugs. This study aimed at exploring the change of arsenic concentration in mice and across MDCK-MDR1 cells and the cytotoxicity on K562 cells when realgar and indigo naturalis were combined. In the presence or absence of indigo naturalis, pharmacokinetics and cell-based permeability assays were used to evaluate the change of arsenic concentration, and K562 cell line was applied to evaluate the change of cytotoxicity. The drug concentration-time profiles exhibited that the combination medication group generated higher AUC, thalf, and longer MRT for arsenic, compared with the single administration of realgar. The apparent permeability coefficients (Papp) of bidirectional transport in MDCK-MDR1 cell permeability experiments showed that arsenic permeability obviously went up when indigo naturalis was incubated together. The combination medication significantly decreased the cell viability of K562 cells when both the concentration of realgar and the concentration of indigo naturalis were nontoxic. The pharmacokinetic research, the MDCK-MDR1 based permeability study, and the K562 cytotoxicity study were united together to verify the combination medication of realgar and indigo naturalis enhanced the absorption and the permeability across cells for arsenic and effectively inhibited the proliferation of K562 cell line. The molecular binding of As4S4 and indirubin was analyzed by computational study. It is predicted that the formation of the complex [As4S4…Indirubin] involves noncovalent interaction that changes the concentration of arsenic.


ChemistryOpen ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 237-247 ◽  
Author(s):  
Renata Kaczmarek ◽  
Dariusz Korczyński ◽  
Karolina Królewska-Golińska ◽  
Kraig A. Wheeler ◽  
Ferman A. Chavez ◽  
...  

RSC Advances ◽  
2019 ◽  
Vol 9 (50) ◽  
pp. 29273-29292 ◽  
Author(s):  
Singireddi Srinivasarao ◽  
Adinarayana Nandikolla ◽  
Shashidhar Nizalapur ◽  
Tsz Tin Yu ◽  
Sravani Pulya ◽  
...  

Out of 40 benzimdazoles, 12 exhibited potent QSI activity against P. aeruginosa6p, most active QSI is docked to LasR and is less toxic against HEK 293 cell line.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Juan Zhang ◽  
Meng Cao ◽  
Wenwen Yang ◽  
Fengmei Sun ◽  
Cheng Xu ◽  
...  

Benzene is a chemical contaminant widespread in industrial and living environments. The oxidative metabolites of benzene induce toxicity involving oxidative damage. Protecting cells and cell membranes from oxidative damage, glucose-6-phosphate dehydrogenase (G6PD) maintains the reduced state of glutathione (GSH). This study aims to investigate whether the downregulation of G6PD in K562 cell line can influence the oxidative toxicity induced by 1,4-benzoquinone (BQ). G6PD was inhibited in K562 cell line transfected with the specific siRNA of G6PD gene. An empty vector was transfected in the control group. Results revealed that G6PD was significantly upregulated in the control cells and in the cells with inhibited G6PD after they were exposed to BQ. The NADPH/NADP and GSH/GSSG ratio were significantly lower in the cells with inhibited G6PD than in the control cells at the same BQ concentration. The relative reactive oxygen species (ROS) level and DNA oxidative damage were significantly increased in the cell line with inhibited G6PD. The apoptotic rate and G2 phase arrest were also significantly higher in the cells with inhibited G6PD and exposed to BQ than in the control cells. Our results suggested that G6PD inhibition could reduce GSH activity and alleviate oxidative damage. G6PD deficiency is also a possible susceptible risk factor of benzene exposure.


Biomolecules ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 239 ◽  
Author(s):  
Di Stefano ◽  
Marinelli ◽  
Eusepi ◽  
Ciulla ◽  
Fulle ◽  
...  

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by loss of dopaminergic neurons at level of substantia nigra pars compacta. To date, there is no cure for this pathology, except for some drugs able to alleviate the symptoms of PD. In this paper we report the synthesis and biological evaluation of novel sulfur- and selenyl-l-Dopa (LD) derivatives (SP1–6) obtained through the amide junction between the amino group of LD and carboxylic moiety of sulfur- and selenyl-organic compounds, which are commercially available. Biological activity was evaluated on human undifferentiated and retinoic acid/phorbol myristyl acetate (RA/PMA)-differentiated SY-SH5Y neuroblastoma cell line using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Antioxidant activity against oxidative stress was measured using nitroblue tetrazolium (NBT) and 2’,7’-dichlorodihydrofluorescein diacetate (H2DCFDA) assays. Finally, physico-chemical characterization and plasma stability studies of SP1–6 were also performed. Biological data revealed that SP6 has a significant protective action against the neurotoxic action of 6-hydroxydopamine (6-OHDA) and H2O2 in a RA/PMA-differentiated SY-SH5Y neuroblastoma cell line that proved to be an effective antioxidant and protective compound. SP6, endowed with a lipophilic nature, low molecular weight, and plasma stability, can easily cross biological membranes via passive diffusion such as through the blood–brain barrier. SP6 has great potential for developing novel pharmacological approach for neurodegenerative diseases, such as PD. Further studies will help define its exact antioxidant mechanism and determine whether the neuroprotective action is mediated or modulated by glutathione peroxidase (GPx).


Sign in / Sign up

Export Citation Format

Share Document