infiltration processes
Recently Published Documents


TOTAL DOCUMENTS

93
(FIVE YEARS 22)

H-INDEX

13
(FIVE YEARS 2)

Author(s):  
Chao-Sheng Tang ◽  
Xue-Peng Gong ◽  
Zhengtao Shen ◽  
Qing Cheng ◽  
Hilary Inyang ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3492
Author(s):  
Ioannis Argyrokastritis ◽  
Maria Psychogiou ◽  
Paraskevi A. Londra

Ponded infiltration processes occur in agricultural lands irrigated by flooding of their soil surface or under insufficient drainage conditions. The existing equations describing the phenomenon of vertical infiltration under ponded conditions have not considered the actual contribution of the pressure head gradient to the flow. In this study, simple equations are proposed to describe the horizontal and vertical infiltration under various ponding heads incorporating the actual contribution of the pressure head gradient to the flow. Six soils with known hydraulic properties, covering a wide range of soil textures, were used. Horizontal and vertical infiltration data are obtained by numerical simulation for all soils studied using the Hydrus-1D code. To validate the accuracy of the proposed equations, the solutions of horizontal and vertical infiltrations provided by the proposed equations were compared with numerically simulated ones provided by the Hydrus 1-D. The analysis of the results showed a very good agreement in all soils studied. The proposed vertical infiltration equation was also compared to a simple and accurate equation which does not incorporate the actual contribution of the pressure head gradient to the flow and differences between them were observed in all soils studied.


Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1716
Author(s):  
Sergio Esteban Lozano-Baez ◽  
Yamileth Domínguez-Haydar ◽  
Bob W. Zwartendijk ◽  
Miguel Cooper ◽  
Conrado Tobón ◽  
...  

Governments are increasingly committing to significant ecological restoration. However, the impacts of forest restoration on local hydrological services are surprisingly poorly understood. Particularly, limited information is available about the impacts of tree planting on soil infiltration processes and runoff pathways. Thus, we investigated the saturated hydraulic conductivity (Ks) and preferential flow pathways in three land-cover types: (i) Active Restoration, (ii) Degraded Land, and (iii) Reference Forest, with contrasting differences in soil profile and land use history in the municipality of La Jagua de Ibirico, César department, Colombia. We conducted soil sampling, using the Beerkan method to determine Ks values. We also measured vegetation attributes (i.e., canopy cover, vegetation height, diameter at breast height, and total number of trees) and carried out three dye tracer experiments for each study site. The blue dye experiments revealed that near surface matrix infiltration was dominant for Degraded Land, while at the Active Restoration and Reference Forest, this only occurred at local surface depressions. The general infiltration pattern at the three land uses is indicated as being macropore flow with mixed interaction with the matrix and highly affected by the presence of rock fragments. The deeper infiltration patterns occur by preferential flow due to the presence of roots and rock fragments. The mean Ks for the Active Restoration (240 mm h−1) was much higher than the Ks at Degraded Land (40 mm h−1) but still considerably lower than the Reference Forest (324 mm h−1). These results indicate that top soil infiltration capacity and soil physical parameters not only directly regulate the amount of infiltration but also infiltration patterns and runoff processes, leading to lower infiltration and increased excess overland flow for Degraded Land than for other land uses.


2021 ◽  
pp. 115-120
Author(s):  
V. Brant ◽  
K. Krofta ◽  
P. Zábranský ◽  
J. Ježek ◽  
P. Donner ◽  
...  

2021 ◽  
Vol 9 (207) ◽  
pp. 1-14
Author(s):  
Marina Aparecida Barbosa de Souza

This present academic work seeks to show a general vision about the infiltration pathologies, how to find and avoid them on constructions. The objective is to expand and share the knowledge in this area, in order to help the expertise specialists to know why and how the infiltration pathologies processes occur. The methodology of this academic work included bibliographic research, with information gathering tecniques connecting all the topics inside the infiltration pathologies area. By means of these researches, it was possible to understand how the infiltration processes start, allowing the expertise specialist to know how to proceed when they see this kind of pathology.


Hydrology ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 110
Author(s):  
Carlos Martínez ◽  
Zoran Vojinovic ◽  
Arlex Sanchez

This paper presents the performance quantification of different green-grey infrastructures, including rainfall-runoff and infiltration processes, on the overland flow and its connection with a sewer system. The present study suggests three main components to form the structure of the proposed model-based assessment. The first two components provide the optimal number of green infrastructure (GI) practices allocated in an urban catchment and optimal grey infrastructures, such as pipe and storage tank sizing. The third component evaluates selected combined green-grey infrastructures based on rainfall-runoff and infiltration computation in a 2D model domain. This framework was applied in an urban catchment in Dhaka City (Bangladesh) where different green-grey infrastructures were evaluated in relation to flood damage and investment costs. These practices implemented separately have an impact on the reduction of damage and investment costs. However, their combination has been shown to be the best action to follow. Finally, it was proved that including rainfall-runoff and infiltration processes, along with the representation of GI within a 2D model domain, enhances the analysis of the optimal combination of infrastructures, which in turn allows the drainage system to be assessed holistically.


Author(s):  
Xiaolong Wu ◽  
Zhongju Meng ◽  
Xiaohong Dang ◽  
Ji Wang

Soils that contain rock fragments (particles &gt; 2 mm in diameter) are distributed all over the world. The presence of these small rock fragments can have a great impact on soil water retention properties, as well as on the soil-water infiltration and vegetation restoration in semi-arid regions. To quantitatively describe the transport of water in stony soils, repacked soil cores were used to determine the infiltration rates for different rock fragment contents (0%, 10%, 20%, 30%, and 40%) and rock fragment sizes (2–5, 5–8, 8–11, and 2–11 mm). The results showed that both the content and size of the rock fragments and their interaction significantly affected the infiltration process. The infiltration rates over time and the saturated hydraulic conductivity (K<sub>s</sub>) decreased with an increasing rock fragment content to an observed minimum value for a 40% rock fragment content. The soil-water infiltration processes were accurately described by the Kostiakov model. The measured and calculated K<sub>s</sub> values decreased with an increasing rock fragment content, which was in accordance with the published data and in accordance with the K<sub>s</sub> obtained by five empirical methods. The variations in the measured K<sub>s</sub> were likely due to the variations in the soil properties caused by the soil sample repacking. The results of this study may improve the understanding of the effects of the rock fragment content and size on the infiltration processes in arid and semi-arid desert steppes.


Sign in / Sign up

Export Citation Format

Share Document