scholarly journals Galaxy assembly bias and large-scale distribution: a comparison between IllustrisTNG and a semi-analytic model

Author(s):  
Boryana Hadzhiyska ◽  
Sonya Liu ◽  
Rachel S Somerville ◽  
Austen Gabrielpillai ◽  
Sownak Bose ◽  
...  

Abstract In this work, we compare large scale structure observables for stellar mass selected samples at z = 0, as predicted by two galaxy models, the hydrodynamical simulation IllustrisTNG and the Santa-Cruz semi-analytic model (SC-SAM). Although both models have been independently calibrated to match observations, rather than each other, we find good agreement between the two models for two-point clustering and galaxy assembly bias signatures. The models also show a qualitatively similar response of occupancy and clustering to secondary halo paramaters other than mass, such as formation history and concentration, although with some quantitative differences. Thus, our results demonstrate that the galaxy-halo relationships in SC-SAM and TNG are quite similar to first order. However, we also find areas in which the models differ. For example, we note a strong correlation between halo gas content and environment in TNG, which is lacking in the SC-SAM, as well as differences in the occupancy predictions for low-mass haloes. Moreover, we show that higher-order statistics, such as cumulants of the density field, help to accurately describe the galaxy distribution and discriminate between models that show degenerate behaviour for two-point statistics. Our results suggest that SAMs are a promising cost-effective and intuitive method for generating mock catalogues for next generation cosmological surveys.

2020 ◽  
Vol 638 ◽  
pp. A75 ◽  
Author(s):  
V. Bonjean ◽  
N. Aghanim ◽  
M. Douspis ◽  
N. Malavasi ◽  
H. Tanimura

The role played by large-scale structures in galaxy evolution is not very well understood yet. In this study, we investigated properties of galaxies in the range 0.1 <  z <  0.3 from a value-added version of the WISExSCOS catalogue around cosmic filaments detected with DisPerSE. We fitted a profile of galaxy over-density around cosmic filaments and found a typical radius of rm = 7.5 ± 0.2 Mpc. We measured an excess of passive galaxies near to the spine of the filament that was higher than the excess of transitioning and active galaxies. We also detected star formation rates (SFR) and stellar mass (M⋆) gradients pointing towards the spine of the filament. We investigated this result and found an M⋆ gradient for each type of galaxy, that is active, transitioning, and passive; we found a positive SFR gradient for passive galaxies. We also linked the galaxy properties and gas content in the cosmic web. To do so, we investigated the quiescent fraction fQ profile of galaxies around the cosmic filaments. Based on recent studies about the effect of the gas and the cosmic web on galaxy properties, we modelled fQ with a β model of gas pressure. The slope obtained in this work, β = 0.54 ± 0.18, is compatible with the scenario of projected isothermal gas in hydrostatic equilibrium (β = 2/3) and with the profiles of gas fitted in Sunyaev-Zel’dovich data from the Planck satellite.


2020 ◽  
Vol 635 ◽  
pp. A195 ◽  
Author(s):  
C. Gouin ◽  
N. Aghanim ◽  
V. Bonjean ◽  
M. Douspis

Galaxy clusters are connected at their peripheries to the large-scale structures by cosmic filaments that funnel accreting material. These filamentary structures are studied to investigate both environment-driven galaxy evolution and structure formation and evolution. In the present work, we probe in a statistical manner the azimuthal distribution of galaxies around clusters as a function of the cluster-centric distance, cluster richness, and star-forming or passive galaxy activity. We performed a harmonic decomposition in large photometric galaxy catalogue around 6400 SDSS clusters with masses M >  1014 solar masses in the redshift range of 0.1 <  z <  0.3. The same analysis was performed on the mock galaxy catalogue from the light cone of a Magneticum hydrodynamical simulation. We used the multipole analysis to quantify asymmetries in the 2D galaxy distribution. In the inner cluster regions at R <  2R500, we confirm that the galaxy distribution traces an ellipsoidal shape, which is more pronounced for richest clusters. In the outskirts of the clusters (R = [2 − 8]R500), filamentary patterns are detected in harmonic space with a mean angular scale mmean = 4.2 ± 0.1. Massive clusters seem to have a larger number of connected filaments than lower-mass clusters. We also find that passive galaxies appear to trace the filamentary structures around clusters better. This is the case even if the contribution of star-forming galaxies tends to increase with the cluster-centric distance, suggesting a gradient of galaxy activity in filaments around clusters.


Author(s):  
Yan Pan ◽  
Shining Li ◽  
Qianwu Chen ◽  
Nan Zhang ◽  
Tao Cheng ◽  
...  

Stimulated by the dramatical service demand in the logistics industry, logistics trucks employed in last-mile parcel delivery bring critical public concerns, such as heavy cost burden, traffic congestion and air pollution. Unmanned Aerial Vehicles (UAVs) are a promising alternative tool in last-mile delivery, which is however limited by insufficient flight range and load capacity. This paper presents an innovative energy-limited logistics UAV schedule approach using crowdsourced buses. Specifically, when one UAV delivers a parcel, it first lands on a crowdsourced social bus to parcel destination, gets recharged by the wireless recharger deployed on the bus, and then flies from the bus to the parcel destination. This novel approach not only increases the delivery range and load capacity of battery-limited UAVs, but is also much more cost-effective and environment-friendly than traditional methods. New challenges therefore emerge as the buses with spatiotemporal mobility become the bottleneck during delivery. By landing on buses, an Energy-Neutral Flight Principle and a delivery scheduling algorithm are proposed for the UAVs. Using the Energy-Neutral Flight Principle, each UAV can plan a flying path without depleting energy given buses with uncertain velocities. Besides, the delivery scheduling algorithm optimizes the delivery time and number of delivered parcels given warehouse location, logistics UAVs, parcel locations and buses. Comprehensive evaluations using a large-scale bus dataset demonstrate the superiority of the innovative logistics UAV schedule approach.


Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 899
Author(s):  
Djordje Mitrovic ◽  
Miguel Crespo Chacón ◽  
Aida Mérida García ◽  
Jorge García Morillo ◽  
Juan Antonio Rodríguez Diaz ◽  
...  

Studies have shown micro-hydropower (MHP) opportunities for energy recovery and CO2 reductions in the water sector. This paper conducts a large-scale assessment of this potential using a dataset amassed across six EU countries (Ireland, Northern Ireland, Scotland, Wales, Spain, and Portugal) for the drinking water, irrigation, and wastewater sectors. Extrapolating the collected data, the total annual MHP potential was estimated between 482.3 and 821.6 GWh, depending on the assumptions, divided among Ireland (15.5–32.2 GWh), Scotland (17.8–139.7 GWh), Northern Ireland (5.9–8.2 GWh), Wales (10.2–8.1 GWh), Spain (375.3–539.9 GWh), and Portugal (57.6–93.5 GWh) and distributed across the drinking water (43–67%), irrigation (51–30%), and wastewater (6–3%) sectors. The findings demonstrated reductions in energy consumption in water networks between 1.7 and 13.0%. Forty-five percent of the energy estimated from the analysed sites was associated with just 3% of their number, having a power output capacity >15 kW. This demonstrated that a significant proportion of energy could be exploited at a small number of sites, with a valuable contribution to net energy efficiency gains and CO2 emission reductions. This also demonstrates cost-effective, value-added, multi-country benefits to policy makers, establishing the case to incentivise MHP in water networks to help achieve the desired CO2 emissions reductions targets.


Author(s):  
Paul Oehlmann ◽  
Paul Osswald ◽  
Juan Camilo Blanco ◽  
Martin Friedrich ◽  
Dominik Rietzel ◽  
...  

AbstractWith industries pushing towards digitalized production, adaption to expectations and increasing requirements for modern applications, has brought additive manufacturing (AM) to the forefront of Industry 4.0. In fact, AM is a main accelerator for digital production with its possibilities in structural design, such as topology optimization, production flexibility, customization, product development, to name a few. Fused Filament Fabrication (FFF) is a widespread and practical tool for rapid prototyping that also demonstrates the importance of AM technologies through its accessibility to the general public by creating cost effective desktop solutions. An increasing integration of systems in an intelligent production environment also enables the generation of large-scale data to be used for process monitoring and process control. Deep learning as a form of artificial intelligence (AI) and more specifically, a method of machine learning (ML) is ideal for handling big data. This study uses a trained artificial neural network (ANN) model as a digital shadow to predict the force within the nozzle of an FFF printer using filament speed and nozzle temperatures as input data. After the ANN model was tested using data from a theoretical model it was implemented to predict the behavior using real-time printer data. For this purpose, an FFF printer was equipped with sensors that collect real time printer data during the printing process. The ANN model reflected the kinematics of melting and flow predicted by models currently available for various speeds of printing. The model allows for a deeper understanding of the influencing process parameters which ultimately results in the determination of the optimum combination of process speed and print quality.


2020 ◽  
Vol 30 (Supplement_5) ◽  
Author(s):  
D Panatto ◽  
P Landa ◽  
D Amicizia ◽  
P L Lai ◽  
E Lecini ◽  
...  

Abstract Background Invasive disease due to Neisseria meningitidis (Nm) is a serious public health problem even in developed countries, owing to its high lethality rate (8-15%) and the invalidating sequelae suffered by many (up to 60%) survivors. As the microorganism is transmitted via the airborne route, the only available weapon in the fight against Nm invasive disease is vaccination. Our aim was to carry out an HTA to evaluate the costs and benefits of anti-meningococcal B (MenB) vaccination with Trumenba® in adolescents in Italy, while also considering the impact of this new vaccination strategy on organizational and ethics aspects. Methods A lifetime Markov model was developed. MenB vaccination with the two-dose schedule of Trumenba® in adolescents was compared with 'non-vaccination'. Two perspectives were considered: the National Health Service (NHS) and society. Three disease phases were defined: acute, post-acute and long-term. Epidemiological, economic and health utilities data were taken from Italian and international literature. The analysis was conducted by means of Microsoft Excel 2010®. Results Our study indicated that vaccinating adolescents (11th year of life) with Trumenba® was cost-effective with an ICER = € 7,912/QALY from the NHS perspective and € 7,758/QALY from the perspective of society. Vaccinating adolescents reduces the number of cases of disease due to meningococcus B in one of the periods of highest incidence of the disease, resulting in significant economic and health savings. Conclusions This is the first study to evaluate the overall impact of free MenB vaccination in adolescents both in Italy and in the international setting. Although cases of invasive disease due to meningococcus B are few, if the overall impact of the disease is adequately considered, it becomes clear that including anti-meningococcal B vaccination into the immunization program for adolescents is strongly recommended from the health and economic standpoints. Key messages Free, large-scale MenB vaccination is key to strengthening the global fight against invasive meningococcal disease. Anti-meningococcal B vaccination in adolescents is a cost-effective health opportunity.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 661
Author(s):  
Luigi Piazzi ◽  
Stefano Acunto ◽  
Francesca Frau ◽  
Fabrizio Atzori ◽  
Maria Francesca Cinti ◽  
...  

Seagrass planting techniques have shown to be an effective tool for restoring degraded meadows and ecosystem function. In the Mediterranean Sea, most restoration efforts have been addressed to the endemic seagrass Posidonia oceanica, but cost-benefit analyses have shown unpromising results. This study aimed at evaluating the effectiveness of environmental engineering techniques generally employed in terrestrial systems to restore the P. oceanica meadows: two different restoration efforts were considered, either exploring non-degradable mats or, for the first time, degradable mats. Both of them provided encouraging results, as the loss of transplanting plots was null or very low and the survival of cuttings stabilized to about 50%. Data collected are to be considered positive as the survived cuttings are enough to allow the future spread of the patches. The utilized techniques provided a cost-effective restoration tool likely affordable for large-scale projects, as the methods allowed to set up a wide bottom surface to restore in a relatively short time without any particular expensive device. Moreover, the mats, comparing with other anchoring methods, enhanced the colonization of other organisms such as macroalgae and sessile invertebrates, contributing to generate a natural habitat.


2020 ◽  
Vol 15 (S359) ◽  
pp. 188-189
Author(s):  
Daniela Hiromi Okido ◽  
Cristina Furlanetto ◽  
Marina Trevisan ◽  
Mônica Tergolina

AbstractGalaxy groups offer an important perspective on how the large-scale structure of the Universe has formed and evolved, being great laboratories to study the impact of the environment on the evolution of galaxies. We aim to investigate the properties of a galaxy group that is gravitationally lensing HELMS18, a submillimeter galaxy at z = 2.39. We obtained multi-object spectroscopy data using Gemini-GMOS to investigate the stellar kinematics of the central galaxies, determine its members and obtain the mass, radius and the numerical density profile of this group. Our final goal is to build a complete description of this galaxy group. In this work we present an analysis of its two central galaxies: one is an active galaxy with z = 0.59852 ± 0.00007, while the other is a passive galaxy with z = 0.6027 ± 0.0002. Furthermore, the difference between the redshifts obtained using emission and absorption lines indicates an outflow of gas with velocity v = 278.0 ± 34.3 km/s relative to the galaxy.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1646
Author(s):  
Jingya Xie ◽  
Wangcheng Ye ◽  
Linjie Zhou ◽  
Xuguang Guo ◽  
Xiaofei Zang ◽  
...  

In the last couple of decades, terahertz (THz) technologies, which lie in the frequency gap between the infrared and microwaves, have been greatly enhanced and investigated due to possible opportunities in a plethora of THz applications, such as imaging, security, and wireless communications. Photonics has led the way to the generation, modulation, and detection of THz waves such as the photomixing technique. In tandem with these investigations, researchers have been exploring ways to use silicon photonics technologies for THz applications to leverage the cost-effective large-scale fabrication and integration opportunities that it would enable. Although silicon photonics has enabled the implementation of a large number of optical components for practical use, for THz integrated systems, we still face several challenges associated with high-quality hybrid silicon lasers, conversion efficiency, device integration, and fabrication. This paper provides an overview of recent progress in THz technologies based on silicon photonics or hybrid silicon photonics, including THz generation, detection, phase modulation, intensity modulation, and passive components. As silicon-based electronic and photonic circuits are further approaching THz frequencies, one single chip with electronics, photonics, and THz functions seems inevitable, resulting in the ultimate dream of a THz electronic–photonic integrated circuit.


Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 885
Author(s):  
Nicole Knoblauch ◽  
Peter Mechnich

Zirconium-Yttrium-co-doped ceria (Ce0.85Zr0.13Y0.02O1.99) compacts consisting of fibers with diameters in the range of 8–10 µm have been successfully prepared by direct infiltration of commercial YSZ fibers with a cerium oxide matrix and subsequent sintering. The resulting chemically homogeneous fiber-compacts are sinter-resistant up to 1923 K and retain a high porosity of around 58 vol% and a permeability of 1.6–3.3 × 10−10 m² at a pressure gradient of 100–500 kPa. The fiber-compacts show a high potential for the application in thermochemical redox cycling due its fast redox kinetics. The first evaluation of redox kinetics shows that the relaxation time of oxidation is five times faster than that of dense samples of the same composition. The improved gas exchange due to the high porosity also allows higher reduction rates, which enable higher hydrogen yields in thermochemical water-splitting redox cycles. The presented cost-effective fiber-compact preparation method is considered very promising for manufacturing large-scale functional components for solar-thermal high-temperature reactors.


Sign in / Sign up

Export Citation Format

Share Document