target rock
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 9)

H-INDEX

6
(FIVE YEARS 1)

2021 ◽  
Vol 906 (1) ◽  
pp. 012086
Author(s):  
Tatyana Ponomareva ◽  
Tatyana Shumilova

Abstract The shock waves can strongly change the physical properties of the target rock minerals including their density and magnetism which determine petrochemical properties of impactites finely as a rule are resulted in astroblemes contours on geophysical maps. Following to the aero-magnetic mapping data the non-magnetic sedimentary rocks of the Kara target create a zero and negative magnetic field with an average intensity of -1 nT, against the background the southwestern region of the Kara astrobleme provides the positive magnetic anomalies with an intensity of 1 to 3 nT which are in a good correspondence with the Pay-Khoy ridge structure general orientation. The Kara dome is characterised with an isometric negative anomaly of intensity -5 nT. Here we present the magnetic properties of the different kinds of the Kara impactites including impact ultra-high pressure high temperature (UHPHT) melt glasses, melt rocks and suevitic breccia compare to sedimentary target rocks. The petrophysical measurements presented the specific magnetic susceptibility of the impactites in the range of 8 to 48×10-8 SI units, where the UHPHT glasses have the limits from 9 to 38×10-8 SI units (15×10-8 SI units, in average). The sedimentary target is characterised with essentially lower level of magnetic susceptibility – no higher than 15×10-8 SI units, where limestone has it about zero. Following to the similar level of the iron content within the impactites and target rocks the magnetism of the Kara impact melts is explained rather by changing of magnetic properties by the impact process. One of the possible source of magnetism can be partially an iron-containing matter of the asteroid component in the form of pyrrhotine accompanied with Ni and Co impurities. Also, we cannot exclude partial presence of magnetic iron component directly within the quenched impact glasses including UHPHT variety.


Author(s):  
Anuj Kumar Singh ◽  
Jayanta Kumar Pati ◽  
Shiva Kumar Patil ◽  
Wolf Uwe Reimold ◽  
Arun Kumar Rao ◽  
...  

ABSTRACT The ~11-km-wide, Paleoproterozoic Dhala impact structure in north-central India comprises voluminous exposures of impact melt breccia. These outcrops are discontinuously spread over a length of ~6 km in a semicircular pattern along the northern, inner limit of the monomict breccia ring around the central elevated area. This study of the magnetic fabrics of impact breccias and target rocks from the Dhala impact structure identified a weak preferred magnetic orientation for pre-impact crystalline target rocks. The pre- and synimpact rocks from Dhala have magnetite and ilmenite as common magnetic phases. The distributions of magnetic vectors are random for most impact melt breccia samples, but some do indicate a preferred orientation. Our anisotropy of magnetic susceptibility (AMS) data demonstrate that the shape of susceptibility ellipsoids for the target rocks varies from prolate to oblate, and most impact melt breccia samples display both shapes, with a slight bias toward the oblate geometry. The average value for the corrected degree of anisotropy of impact melt rock (P′ = 1.009) is lower than that for the target rocks (P′ = 1.091). The present study also shows that both impact melt breccia and target rock samples of the Dhala structure have undergone minor postimpact alteration, and have similar compositions in terms of magnetic phases and high viscosity. Fine-grained iron oxide or hydroxide is the main alteration phase in impact melt rocks. Impact melt rocks gave a narrow range of mean magnetic susceptibility (Km) and P′ values, in contrast to the target rock samples, which gave Km = 0.05–12.9 × 10−3 standard international units (SI) and P′ = 1.036–1.283. This suggests similar viscosity of the source magma, and limited difference in the degrees of recorded deformation. Between Pagra and Maniar villages, the Km value of impact melt breccias gradually decreases in a clockwise direction, with a maximum value observed near Pagra (Km = 1.67 × 10−3 SI). The poor grouping of magnetic fabrics for most impact melt rock samples implies local turbulence in rapidly cooled impact melt at the front of the melt flow immediately after the impact. The mean K1 for most impact melt samples suggests subhorizontal (<5°) flow in various directions. The average value of Km for the target rocks (4.41 × 10−3 SI) is much higher compared to the value for melt breccias (1.09 × 10−3 SI). The results of this study suggest that the melt breccias were likely part of a sheet-like body of sizeable extent. Our magnetic fabric data are also supported by earlier core drilling information from ~70 locations, with coring depths reaching to −500 m. Our extensive field observations combined with available widespread subsurface data imply that the impact melt sheet could have covered as much as 12 km2 in the Dhala structure, with an estimated minimum melt volume of ~2.4 km3.


Author(s):  
Maria Herrmann ◽  
Carl Alwmark ◽  
Michael Storey

ABSTRACT Crater-forming events are generally followed by the development of hydrothermal systems due to the rapid heating of the target rock. Such hydrothermal systems are a feature of nearly all large terrestrial impact structures. For the Siljan impact structure in Sweden, there is evidence for such a fossil hydrothermal system, possibly triggered by the impact event ca. 380 Ma. To investigate the thermal regime of the near-surface hydrothermal activity of the Siljan crater, biotite and amphibole grains extracted from samples collected in a transect across the high-pressure regime recorded by the central uplift, as well as from distal localities outside the central uplift of the crater, were dated using the 40Ar/39Ar laser step-heating technique. Our results show that biotite from inside the central uplift, which was strongly altered to chlorite by low-temperature (200–340 °C) hydrothermal reactions, yields strongly disturbed age spectra. The first and second (low laser power) step ages range from ca. 1300 to 190 Ma. In contrast, biotite from outside the central uplift and amphibole, irrespective of location inside or outside of the central uplift, are much less altered, which is reflected in less disturbed, near-flat age spectra. This result indicates that the hydrothermal temperatures inside the central uplift were >200 °C, sufficient to disturb the K-Ar system of biotite during its chloritization, but too low to affect the amphibole (closure temperature of 480–580 °C). In contrast, the temperature of the hydrothermal system outside of the central uplift was <200 °C, as no significant reset of the K-Ar system can be observed in either biotite or amphibole. Our results are consistent with estimated trapping temperatures from fluid inclusion studies, which show a decrease from 327–342 °C within the central uplift to 40–225 °C toward outside the central uplift. We conclude that the near-surface hydrothermal system in the Siljan impact structure was an impact-triggered system. This system was strongly active, with its highest temperature inside the central uplift and decreasing rapidly toward the outlying part of the crater.


Author(s):  
Felix M. Schulte ◽  
◽  
Axel Wittmann ◽  
Stefan Jung ◽  
Joanna V. Morgan ◽  
...  

AbstractCore from Hole M0077 from IODP/ICDP Expedition 364 provides unprecedented evidence for the physical processes in effect during the interaction of impact melt with rock-debris-laden seawater, following a large meteorite impact into waters of the Yucatán shelf. Evidence for this interaction is based on petrographic, microstructural and chemical examination of the 46.37-m-thick impact melt rock sequence, which overlies shocked granitoid target rock of the peak ring of the Chicxulub impact structure. The melt rock sequence consists of two visually distinct phases, one is black and the other is green in colour. The black phase is aphanitic and trachyandesitic in composition and similar to melt rock from other sites within the impact structure. The green phase consists chiefly of clay minerals and sparitic calcite, which likely formed from a solidified water–rock debris mixture under hydrothermal conditions. We suggest that the layering and internal structure of the melt rock sequence resulted from a single process, i.e., violent contact of initially superheated silicate impact melt with the ocean resurge-induced water–rock mixture overriding the impact melt. Differences in density, temperature, viscosity, and velocity of this mixture and impact melt triggered Kelvin–Helmholtz and Rayleigh–Taylor instabilities at their phase boundary. As a consequence, shearing at the boundary perturbed and, thus, mingled both immiscible phases, and was accompanied by phreatomagmatic processes. These processes led to the brecciation at the top of the impact melt rock sequence. Quenching of this breccia by the seawater prevented reworking of the solidified breccia layers upon subsequent deposition of suevite. Solid-state deformation, notably in the uppermost brecciated impact melt rock layers, attests to long-term gravitational settling of the peak ring.


2020 ◽  
Vol 54 ◽  
pp. 195-204
Author(s):  
Aliya Mukhametdinova ◽  
Tagir Karamov ◽  
Natalia Bogdanovich ◽  
Sergey Borisenko ◽  
Svetlana Rudakovskaya ◽  
...  

Abstract. In this work, we have investigated the wettability of Bazhenov Formation rock samples using a nuclear magnetic resonance (NMR), the methods of vapor adsorption, and wetting contact angle. We have conducted the petrographic description of rocks using ultra-thin sections and scanning electron microscopy (SEM). In addition, we used data on the organic content (TOC) obtained by the Rock-Eval method and the results of lithological typing on thin sections for detailed analysis of NMR and contact angle methods results. Thus, for target rock, the groups with a similar rock wettability were highlighted by the lithological description of thin sections. The calculation of the wetting angle provided an initial assessment of the surface wettability of the rock and made it possible to establish the relationship between the wetting angle and the TOC, which is relevant for rocks of the Abalak-Bazhenov group. The NMR method described the core plug wettability proved to be less sensitive to the rock lithotype and organic matter (OM) texture in the rock and, therefore, used for the integral characterization of core plugs. Correlations of calculated wetting angle and adsorption wettability index vs. TOC and OM texture illustrated the dependence of rock wettability behavior on both the lithological specifics and the OM properties.


2019 ◽  
Vol 55 (1) ◽  
pp. 56-66
Author(s):  
Leonard F. Henrichs ◽  
Agnes Kontny ◽  
Boris Reznik ◽  
Uta Gerhards ◽  
Jörg Göttlicher ◽  
...  
Keyword(s):  

2019 ◽  
Vol 54 (6) ◽  
pp. 1228-1245 ◽  
Author(s):  
Paul L. Göllner ◽  
Torben Wüstemann ◽  
Lisa Bendschneider ◽  
Sebastian Reimers ◽  
Martin D. Clark ◽  
...  

2017 ◽  
Vol 7 (1) ◽  
pp. 13 ◽  
Author(s):  
Victor F. Velázquez ◽  
Rodrigo F. Lucena ◽  
Jose M. Azevedo Sobrinho ◽  
Alethéa E. Martins Sallun ◽  
William Sallun Filho

The Colônia impact crater, developed on crystalline basement rocks, offers an excellent example of one of the most unique features of the impact process: the effects of shock waves on textural and mineralogical changes of the target rock. The impact melt-bearing impactites were derived essentially from the igneous and metamorphic rocks, including granite, mica schist, granitic gneiss, and quartzite. Investigations using optical microscopy indicate that the effect of shock waves on those lithologies caused a wide variety of deformation features and generation of new materials. The most common features include fluidal textures, unusual rearrangement patterns between grains, recrystallization, decomposition and precipitation of new phases, agglutination of glassy and crystalline spherules, and the mobilized melt formed different types of impact melt particles. These transformations cover processes that may involve a new grain growing at the expense of parental grains of the same species, or crystallization of different mineral types from component-providing grains until a complete textural and compositional change of the target rocks occurs. Small-scale structures in deformed rocks are particularly interesting for exploring elastic-plastic deformation, phase transformations, and generation of impact melt products.


Sign in / Sign up

Export Citation Format

Share Document