central uplift
Recently Published Documents


TOTAL DOCUMENTS

66
(FIVE YEARS 9)

H-INDEX

15
(FIVE YEARS 0)

2021 ◽  
Vol 906 (1) ◽  
pp. 012087
Author(s):  
Tatyana Shumilova ◽  
Aleksey Morokhin ◽  
Alexandr Zubov ◽  
Renat Shaybekov

Abstract Recent find of the ultra-high pressure high-temperature (UHPHT) impact melt glasses among the impactites of the Kara astrobleme has a high interest in nicely preserved 70 Ma glass with potentially unusual structure and properties. By the moment, it is important to understand about the substance source for the UHPHT glasses. The Kara target is characterized with complicated rock material preferably presented with Paleozoic sedimentary units. At the same time, the target has in a sequence Devonian sills and dikes of gabbro-dolerites. The latter appear on the surface at the Kara dome being a material which probably have been affected by the most strong impact. Here we for the first time describe the results of preliminary analysis of petrological and geochemical features of the magmatic dikes of the central uplift with the aim to understand their probable genetic source for the UHPHT impact melt veins matter. The provided studies point to essential difference between the compared materials, that means the UHPHT impact melts do not correspond to the magmatic material of the Khengursky complex of gabbro-dolerites of the Pay-Khoy Ridge (Russia).



Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1212
Author(s):  
Pei Chen ◽  
Meiyan Fu ◽  
Hucheng Deng ◽  
Wang Xu ◽  
Dong Wu ◽  
...  

The hydrothermal fluid–carbonate rock reaction is frequently regarded to occur in deep-burial diagenesis, and the hydrothermal dissolution is usually distributed and takes place along the faults. Previous studies have suggested that there was hydrothermal fluid activity locally in the Permian Qixia Formation in Sichuan Basin, likely related to the Emeishan basalt eruption. However, the effect of hydrothermal fluids on the carbonate rocks of the Qixia Formation in the central uplift of Sichuan Basin is still unclear. Based on the characteristics and geochemical parameters of the diagenetic minerals, this study aims to reveal the diagenetic alteration related to the hydrothermal fluid–rock reaction in the Qixia Formation and reestablish the diagenetic evolution by using the timing of diagenetic mineral precipitation. The methods include petrographic observation; trace and rare earth element (REE) analysis; C, O and Sr isotope measurement; fluid inclusion temperature measurement and cathodoluminescence analysis. According to the petrographic characteristics, the dolostones are mainly of crystalline structure, namely fine-medium crystalline dolostone, meso-coarse crystalline dolostone, and coarse crystalline dolostone, with the cathodoluminescence color becoming brighter in that order. The limestones from the Qixia Formation are of the bioclastic limestone type, with no cathodoluminescence color. Compared with dolostones, limestones have higher Sr content, lower Mn content, and heavier oxygen isotopes. With the crystalline size of dolostone becoming coarser, the oxygen isotopes of dolostones tend to become lighter. The meso-coarse crystalline dolostone has the highest Mn content and negative carbon isotope. Both limestones and dolostones have an obvious positive Eu anomaly in the Qixia Formation. However, the REE patterns of fine-medium crystalline dolostones are very different from those of meso-coarse crystalline dolostone. It is credible that there were two periods of hydrothermal fluid charging, with different chemical compositions. The first period of hydrothermal fluids could laterally migrate along the sequence boundary. Fine-medium crystalline dolostones were almost completely distributed below the sequence boundary and were dolomitized during the shallow burial period. As products of the hydrothermal fluid–dolostone reaction, the saddle-shaped dolomites in the meso-coarse crystalline dolostones were the evidence of the second period of hydrothermal fluids. As a result, the dolomitization model was established according to the timing of diagenetic mineral precipitation, which can improve the geological understanding of the effect of hydrothermal fluid activities on the carbonate rocks in the Qixia Formation.





Author(s):  
Shalene Manzi ◽  
Roger L. Gibson ◽  
Asinne Tshibubudze

ABSTRACT Structural analysis of overturned metasedimentary strata of the lower Witwatersrand Supergroup in the inner collar of the Vredefort Dome reveals the presence of tangential folds and faults associated with the 2.02 Ga impact. The folds are distinct from previously identified subradially oriented, vertical to plunging-inclined, gentle folds that are interpreted as the products of convergent flow (constriction) during the initial stages of central uplift formation. The tangential folds comprise disharmonic, open, asymmetric, horizontal to plunging-inclined anticline-syncline pairs with centripetally dipping axial planes and right-way-up intermediate limbs. They display centripetal-down vergence (anticline radially outward of the syncline) that is consistent with steep inward-directed shear of the overturned strata. We attribute this kinematic pattern to subvertical collapse of the Vredefort central uplift during the latter stages of crater modification. The folds are cut by pseudotachylite-bearing steep to vertical tangential faults that display center-down slip of <10 m up to ~150 m. Both the tangential folds and the faults suggest that the large-scale overturning of strata related to outward collapse of the Vredefort central uplift was accompanied by a component of inward-directed collapse via layer-parallel shearing and folding, followed by faulting. Subradially oriented faults with conjugate strike separations of 1–2 km in the NNE collar of the dome suggest penecontemporaneous tangential extension of the inner collar rocks. This evidence indicates that second-order structures in the metasedimentary collar of the Vredefort Dome preserve a complex, multistage record of evolving strain associated with both initial convergent and upward flow (constriction) related to central uplift rise and later divergent and downward flow (flattening) linked to its collapse, and that centripetally directed collapse features may be important components of the structural inventory of very large central uplifts.



Author(s):  
Maria Herrmann ◽  
Carl Alwmark ◽  
Michael Storey

ABSTRACT Crater-forming events are generally followed by the development of hydrothermal systems due to the rapid heating of the target rock. Such hydrothermal systems are a feature of nearly all large terrestrial impact structures. For the Siljan impact structure in Sweden, there is evidence for such a fossil hydrothermal system, possibly triggered by the impact event ca. 380 Ma. To investigate the thermal regime of the near-surface hydrothermal activity of the Siljan crater, biotite and amphibole grains extracted from samples collected in a transect across the high-pressure regime recorded by the central uplift, as well as from distal localities outside the central uplift of the crater, were dated using the 40Ar/39Ar laser step-heating technique. Our results show that biotite from inside the central uplift, which was strongly altered to chlorite by low-temperature (200–340 °C) hydrothermal reactions, yields strongly disturbed age spectra. The first and second (low laser power) step ages range from ca. 1300 to 190 Ma. In contrast, biotite from outside the central uplift and amphibole, irrespective of location inside or outside of the central uplift, are much less altered, which is reflected in less disturbed, near-flat age spectra. This result indicates that the hydrothermal temperatures inside the central uplift were >200 °C, sufficient to disturb the K-Ar system of biotite during its chloritization, but too low to affect the amphibole (closure temperature of 480–580 °C). In contrast, the temperature of the hydrothermal system outside of the central uplift was <200 °C, as no significant reset of the K-Ar system can be observed in either biotite or amphibole. Our results are consistent with estimated trapping temperatures from fluid inclusion studies, which show a decrease from 327–342 °C within the central uplift to 40–225 °C toward outside the central uplift. We conclude that the near-surface hydrothermal system in the Siljan impact structure was an impact-triggered system. This system was strongly active, with its highest temperature inside the central uplift and decreasing rapidly toward the outlying part of the crater.



Author(s):  
Shiwei Yi ◽  
Mingpeng Li ◽  
Shujuan Xu ◽  
Xujie Guo ◽  
Baowen Cui ◽  
...  


Author(s):  
Yumao Pang ◽  
Xingwei Guo ◽  
Xiangchun Chang ◽  
Junjian Zhang ◽  
Jingqi Zhou ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document