chart recorder
Recently Published Documents


TOTAL DOCUMENTS

99
(FIVE YEARS 3)

H-INDEX

11
(FIVE YEARS 0)

MAUSAM ◽  
2022 ◽  
Vol 44 (2) ◽  
pp. 163-166
Author(s):  
J.S. PJLLAI ◽  
SANGEETA SAXENA ◽  
K. G. VERNEKAR

An automatic soil temperature measuring equipment is developed using four terminal thermistors. The output voltages from the six levels, i.e., 10 cm above soil surface, soil surface and 10 cm, 20 cm, 30 cm and 60 cm below the soil surface, are amplified and their multiplexed output is recorded on a chart recorder. The equipment is tested in the field and continuous observations are taken during May 1991. Temperature profiles for different hours of the day are plotted and diurnal variations of all levels are also discussed. An attempt is made to evaluate the damping depth and thence the thermal conductivity and soil heat flux.


2020 ◽  
Vol 9 (1) ◽  
pp. 11
Author(s):  
Muchamad Oktaviandri

Berdasarkan pipeline engineering, pipa di analisa memiliki tiga kondisi yaitu kondisi instalasi, hydrotest dan kondisi operasi. Pada saat kondisi tersebut pipa bawah laut sering sekali mengalami beberapa potensi dan bahaya yang mengancam kerusakan pipa dan berakibat pada keberlangsungan proses instalasi, operasi ataupun hydrotest. Apabila hal ini terjadi, maka permasalahan ini dapat meluas pada aspek pemeliharaan dan aspek ekonomis serta lingkungan yang ada disekitarnya. Selain itu, kegagalan pipa juga dapat terjadi karena faktor alam yang berasal dari gelombang, arus dan gempa bumi yang dapat menyebabkan terjadinya scouring, land slide dan soil liquefaction. Sebelum terjadi kegagalan pipa maka perlu melakukan mitigasi yang paling tepat untuk mengurangi adanya kegagalan pipa. Hydrotest itu sendiri disini memiliki peranan yang tidak kalah penting yaitu untuk mendeteksi kebocoran pipa dengan cara menyemprotkan air kedalam pipa.


Author(s):  
Matteo De Vincenzi ◽  
Gianni Fasano

The first measuring instruments of solar radiation, for meteorological aims, were made only in 1800s. In 1896 OMI established a commission for radiometry which led, in 1905, to choose Ångström pyrheliometer as standard instrument. Later, radiometers were built with a chart recorder for measuring solar radiation components. Instruments using thermopile or photocell as sensitive element were made. From 1980s radiometers with data logger were built. In 2000s devices were developed for measuring solar radiation components in water column, for studies on physical and biological marine quantities.


2017 ◽  
Vol 13 (S337) ◽  
pp. 73-78
Author(s):  
Joanna M. Rankin

AbstractPulsars were discovered on the basis of their individual pulses, first by Jocelyn Bell and then by many others. This was chart-recorder science as computers were not yet in routine use. Single pulses carry direct information about the emission process as revealed in the detailed properties of their polarization characteristics. Early analyses of single pulses proved so dizzyingly complex that attention shifted to study of average profiles. This is turn led to models of pulsar emission beams—in particular the core/double-cone model—which now provides a foundation for understanding single-pulse sequences. We mention some of the 21stC single-pulse surveys and conclude with a brief discussion of our own recent analyses leading to the identification of the pulsar radio-emission mechanism of both slow and millsecond pulsars.


Author(s):  
Patrick Magee ◽  
Mark Tooley

There are, and have been, many monitors designed to monitor depth of anaesthesia and to give an indication of awareness during surgery, which use electrical signals obtained from the human body. Some have been designed as just research devices, some have been available commercially, but have been withdrawn, and some are still available. Most, but not all, are based on the spontaneous EEG and the AER. Some have been designed to use properties of the ECG. Although useful, all of the discussed monitors have some shortcomings, and not all are 100% sensitive and specific to discriminate between consciousness and unconsciousness, and none correlate exactly with clinical states and levels of anaesthesia. The design of the commercial monitor, the Cerebral Function Monitor (CFM) was based on simple time domain measures already discussed [Maynard et al. 1969]. The CFM took the EEG from a single pair of parietal electrodes. The signal was amplified and passed through a band-pass filter and differentiator, which had the effect of accentuating the gain of the higher end of the 2–15 Hz pass band. The output of this specialised filter was integrated to produce a voltage output, which varied with time. It was plotted on a logarithmic scale. The trace on the paper gave an indication of the power of the EEG and the width of the line gave an indication of the signal’s variability. A schematic of an example of a CFM trace is shown in Figure 19.1(a). The CFM although useful did have its problems [Sechzer 1977]. When used to monitor depth of anaesthesia, the machine was shown to be unreliable, especially when using inhalational agents. The response is biphasic, as has already been discussed in chapter 18. Also burst suppression, as already discussed, is smoothed out by the action of the filtering in the CFM, so effectively the burst suppression can artificially elevate the readings producing a paradoxical rise in cerebral function [Sinha 2007] The machine was further developed into the Cerebral Function Analysing Monitor (CFAM)[Maynard 1984]. This machine produced two chart recorder outputs, as shown in Figure 19.1. There was a chart similar to the CFM trace, and also a chart that produced frequency domain data consisting of the EEG displayed as traditional EEG frequency bands.


2006 ◽  
Vol 39 (4) ◽  
pp. 626-629
Author(s):  
M. Jayaprakasan ◽  
V. Kannan ◽  
P. Ramasamy

X-ray powder diffraction is an established method for the qualitative identification of crystalline materials and their quantitative analysis. The new generation of X-ray diffraction systems are based on expensive digital/embedded control technology and computer interfaces. Yet many laboratories use conventional manual-controlled systems withXYstrip-chart recorders. Since the output spectrum is a strip chart (hard copy), raw data, essential for structural and qualitative analysis, are not readily available for further analysis. Upgrading to modern computerized diffractometers is very expensive. The proposed automation design described here is intended to enable the conventional diffractometer user to collect, store and analyze data quickly. The design also improves the resolution by five times compared with the conventional setup. For the automation, a PC add-on card has been designed to control and collect the timing and intensity counts from the conventional X-ray diffractometer, and suitable software has been developed to collect, process and present the X-ray diffraction data for both qualitative and quantitative analysis. Moreover, a major advantage of this design is that it does not warrant any physical modification of the hardware of the conventional setup; it is simply an extension to enhance the performance of collecting raw data with a higher resolution at desired intervals/timings.


Author(s):  
M. Todd Walter ◽  
Paul Mutch ◽  
Christa D. Salmon ◽  
Donald K. McCool ◽  
Lars O. Hedin

HortScience ◽  
1997 ◽  
Vol 32 (2) ◽  
pp. 278-281 ◽  
Author(s):  
W.C. Lin ◽  
G.S. Block ◽  
M.E. Saltveit

A portable, nondispersive infrared (NDIR) gas analyzer was modified to measure the concentration of CO2 and water vapor in small gas samples. A 2-mL gas sample was taken from a series of sealed flasks partially filled with a saturated solution of chemicals known to produce various levels of relative humidity (RH). The modified NDIR instrument quantified water vapor content by its absorption at 2.59 μm. Peak height was displayed on a strip chart recorder and a standard curve constructed. At a specific temperature, the vapor pressure (VP) and vapor pressure difference (VPD) were calculated for sweet pepper (Capsicum annuum L., cv. Mazurka) fruit packed in trays that were covered with plastic films having several levels of perforations. Water loss from the fruit was highly correlated with VPD inside the packages. The modified NDIR instrument has an advantage over other instruments used to measure RH because it can rapidly and simultaneously determine the concentration of water vapor and CO2 in a single injection of a small gas sample.


Sign in / Sign up

Export Citation Format

Share Document