thermosensitive liposome
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 18)

H-INDEX

15
(FIVE YEARS 4)

2021 ◽  
pp. 1-11
Author(s):  
Mingyuan Li ◽  
Yuan Li ◽  
Shiqin Li ◽  
Lin Jia ◽  
Chunyang Du ◽  
...  

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Yanan Li ◽  
Wenting Song ◽  
Yumin Hu ◽  
Yun Xia ◽  
Zhen Li ◽  
...  

Abstract Background Breast cancer is the fastest-growing cancer among females and the second leading cause of female death. At present, targeted antibodies combined with hyperthermia locally in tumor has been identified as a potential combination therapy to combat tumors. But in fact, the uniformly deep distribution of photosensitizer in tumor sites is still an urgent problem, which limited the clinical application. We reported an HER2-modified thermosensitive liposome (immunoliposome)-assisted complex by reducing gold nanocluster on the surface (GTSL-CYC-HER2) to obtain a new type of bioplasma resonance structured carrier. The HER2 decoration on the surface enhanced targeting to the breast cancer tumor site and forming irregular, dense, "petal-like" shells of gold nanoclusters. Due to the good photothermal conversion ability under near-infrared light (NIR) irradiation, the thermosensitive liposome released the antitumor Chinese traditional medicine, cyclopamine, accompanied with the degradation of gold clusters into 3–5 nm nanoparticles which can accelerate renal metabolism of the gold clusters. With the help of cyclopamine to degrade the tumor associated matrix, this size-tunable gold wrapped immunoliposome was more likely to penetrate the deeper layers of the tumor, while the presence of gold nanoparticles makes GTSL-CYC-HER2 multimodal imaging feasible. Results The prepared GTSL-CYC-HER2 had a size of 113.5 nm and displayed excellent colloidal stability, photo-thermal conversion ability and NIR-sensitive drug release. These GTSL-CYC-HER2 were taken up selectively by cancer cells in vitro and accumulated at tumour sites in vivo. As for the in vivo experiments, compared to the other groups, under near-infrared laser irradiation, the temperature of GTSL-CYC-HER2 rises rapidly to the phase transition temperature, and released the cyclopamine locally in the tumor. Then, the released cyclopamine destroyed the stroma of the tumor tissue while killing the tumor cells, which in turn increased the penetration of the liposomes in deep tumor tissues. Moreover, the GTSL-CYC-HER2 enhanced the performance of multimodal computed tomography (CT) and photothermal (PT) imaging and enabled chemo-thermal combination therapy. Conclusions This optically controlled biodegradable plasmonic resonance structures not only improves the safety of the inorganic carrier application in vivo, but also greatly improves the anti-tumor efficiency through the visibility of in vivo CT and PT imaging, as well as chemotherapy combined with hyperthermia, and provides a synergistic treatment strategy that can broaden the conventional treatment alone. Graphic Abstract


2021 ◽  
Author(s):  
Yanan Li ◽  
Wenting Song ◽  
Yumin Hu ◽  
Yun Xia ◽  
Zhen Li ◽  
...  

Abstract BackgroundBreast cancer is the fastest-growing cancer among females and the second leading cause of female death. At present, targeted antibodies combined with hyperthermia locally in tumor has been identified as a potential combination therapy to combat tumors. But in fact, the uniformly deep distribution of photosensitizer in tumor sites is still an urgent problem, which limited the clinical application. We reported an HER2-modified thermosensitive liposome (immunoliposome)-assisted complex by reducing gold nanocluster on the surface (GTSL-CYC-HER2) to obtain a new type of bioplasma resonance structured carrier. The HER2 decoration on the surface enhanced targeting to the breast cancer tumor site and forming irregular, dense, "petal-like" shells of gold nanoclusters. Due to the good photothermal conversion ability under near-infrared light (NIR) irradiation, the thermosensitive liposome released the antitumor Chinese traditional medicine, cyclopamine, accompanied with the degradation of gold clusters into 3-5nm nanoparticles which can accelerate renal metabolism of the gold clusters. With the help of cyclopamine to degrade the tumor associated matrix, this size-tunable gold wrapped immunoliposome was more likely to penetrate the deeper layers of the tumor, while the presence of gold nanoparticles makes GTSL-CYC-HER2 multimodal imaging feasible.ResultsThe prepared GTSL-CYC-HER2 had a size of 113.5 nm and displayed excellent colloidal stability, photo-thermal conversion ability and NIR-sensitive drug release. These GTSL-CYC-HER2 were taken up selectively by cancer cells in vitro and accumulated at tumour sites in vivo. As for the in vivo experiments, compared to the other groups, under near-infrared laser irradiation, the temperature of GTSL-CYC-HER2 rises rapidly to the phase transition temperature, and released the cyclopamine locally in the tumor. Then, the released cyclopamine destroyed the stroma of the tumor tissue while killing the tumor cells, which in turn increased the penetration of the liposomes in deep tumor tissues. Moreover, the GTSL-CYC-HER2 enhanced the performance of multimodal computed tomography (CT) and photothermal (PT) imaging and enabled chemo-thermal combination therapy.ConclusionsThis optically controlled biodegradable plasmonic resonance structures not only improves the safety of the inorganic carrier application in vivo, but also greatly improves the anti-tumor efficiency through the visibility of in vivo CT and PT imaging, as well as chemotherapy combined with hyperthermia, and provides a synergistic treatment strategy that can broaden the conventional treatment alone.


Nanoscale ◽  
2021 ◽  
Author(s):  
Jie Yu ◽  
Xidong He ◽  
Zigui Wang ◽  
Yu Peng Wang ◽  
Sha Liu ◽  
...  

Immune checkpoint blockade (ICB) therapy in combination with immunogenic death (ICD) triggered by photothermal therapy (PTT) and oxaliplatin (OXA) treatment was expected to elicit both innate and adaptive immune responses...


Nanoscale ◽  
2021 ◽  
Author(s):  
Jie Yu ◽  
Xidong He ◽  
Zigui Wang ◽  
Yupeng Wang ◽  
Sha Liu ◽  
...  

Correction for ‘Combining PD-L1 inhibitors with immunogenic cell death triggered by chemo-photothermal therapy via a thermosensitive liposome system to stimulate tumor-specific immunological response’ by Jie Yu et al., Nanoscale, 2021, DOI: 10.1039/d1nr03288g.


2020 ◽  
Vol 328 ◽  
pp. 551-561
Author(s):  
Maximilian Regenold ◽  
Jessica Steigenberger ◽  
Elisa Siniscalchi ◽  
Michael Dunne ◽  
Luca Casettari ◽  
...  

2020 ◽  
Vol 20 (10) ◽  
pp. 6070-6076
Author(s):  
Shuoye Yang ◽  
Wensheng Zhu ◽  
Zhenwei Wang ◽  
Yongmei Xiao ◽  
Pu Mao ◽  
...  

Thermosensitive liposome-based drug delivery systems (DDS) are powerful tools for site-specific delivery of chemotherapeutics, especially when combined with regional hyperthermia. The objective of this work was to develop a novel thermosensitive liposomal DDS loaded with lomustine, a chemotherapeutic compound, and iohexol, a contrast medium for visualization by CT. Thermosensitive compound liposomes (TSCLs) composed of DPPC were prepared by reverse-phase evaporation and investigated for encapsulation efficiency, temperature-sensitivity, release kinetics, and In Vivo pharmacokinetics. The size and zeta-potential of TSCLs ranged from 250 to 300 nm and −15 to −30 mV, respectively. At 41 °C, TSCLs were shown to release over 90% of iohexol and lomustine within 4 h. The in vitro release profiles of iohexol and lomustine at 41 °C conformed to first-order kinetics and Weibullmodel, respectively. Phase-transition did not occur after incorporation of cholesterol and soybean phospholipids. In Vivo evaluation performed with C6 glioma model rats proved the prolonged half-lives and improved bioavailability by liposomal encapsulation for both compounds under mild local hyperthermia. The TSCLs used in this study may offer a clinically promising mean of increasing efficacy and controlling toxicity.


2020 ◽  
Vol 6 (36) ◽  
pp. eaba5684
Author(s):  
Marc A. Santos ◽  
Sheng-Kai Wu ◽  
Maximilian Regenold ◽  
Christine Allen ◽  
David E. Goertz ◽  
...  

Thermosensitive liposomes represent an important paradigm in oncology, where hyperthermia-mediated release coupled with thermal bioeffects enhance the effectiveness of chemotherapy. Their widespread clinical adoption hinges upon performing controlled targeted hyperthermia, and a leading candidate to achieve this is temperature-based magnetic resonance imaging (MRI)–guided focused ultrasound (MRgFUS). However, the current approach to hyperthermia involves exposures lasting tens of minutes to hours, which is not possible to achieve in many circumstances because of blood vessel cooling and respiratory motion. Here, we investigate a novel approach to overcome these limitations: to use fractionated ultrashort (~30 s) thermal exposures (~41° to 45°C) to release doxorubicin from a thermosensitive liposome. This is first demonstrated in a dorsal chamber tumor model using two-photon microscopy. Thermal exposures were then conducted with a rabbit tumor model using a custom MRgFUS system incorporating temperature feedback control. Drug release was confirmed, and longitudinal experiments demonstrated profoundly enhanced tumor growth inhibition and survival.


Sign in / Sign up

Export Citation Format

Share Document