rubber balloon
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 8)

H-INDEX

10
(FIVE YEARS 1)

Endoscopy ◽  
2021 ◽  
Author(s):  
Nobuya Kobayashi ◽  
Hideki Kobara ◽  
Noriko Nishiyama ◽  
Tingting Shi ◽  
Taiga Chiyo ◽  
...  

2021 ◽  
Author(s):  
Shin-Ichiro Higashino ◽  
Masahiko Hayashi ◽  
Takuya Okada ◽  
Shuji Nagasaki ◽  
Koichi Shiraishi ◽  
...  

Abstract. The authors have developed a system for the Antarctic stratospheric aerosol observation and sample-return using the combination of a rubber balloon, a parachute, and a gliding fixed-wing unmanned aerial vehicle (UAV). A rubber balloon can usually reach 20 km to 30 km in altitude, but it becomes difficult for the UAV designed as a low-subsonic UAV to directly glide back from the stratospheric altitudes because the quantitative aerodynamic characteristics necessary for the control system design at such altitudes are difficult to obtain. In order to make the observation and sample-return possible at such higher altitudes while avoiding the problem with the control system of the UAV, the method using the two-stage separation was developed and attempted in Antarctica. In two-stage separation method, the UAV first descends by a parachute after separating from the balloon at stratospheric altitude to a certain altitude wherein the flight control system of the UAV works properly. Then it secondly separates the parachute for autonomous gliding back to the released point on the ground. The UAV in which an optical particle counter and an airborne aerosol sampler were installed was launched on January 24, 2015 from S17 (69.028S, 40.093E, 607 m MSL) near Syowa Station in Antarctica. The system reached 23 km in altitude and the UAV successfully returned aerosol samples. In this paper, the details of the UAV system using the two-stage separation method including the observation flight results, and the preliminary results of the observation and analyses of the samples are shown.


2020 ◽  
Author(s):  
Mélanie Ghysels ◽  
Georges Durry ◽  
Nadir Amarouche ◽  
Jean-Christophe Samake ◽  
Fabien Frérot ◽  
...  

Abstract. Newly developed mid-infrared lightweight hygrometer, Pico-Light H2O has been tested in-flight on February 19, 2019 and October 16, 2019. It has been flown under a 1200 g rubber balloon operated by CNES from the Aire-sur-l'Adour facility (France) within the E.U. funded HEMERA WP11. During these two flights, we were able to obtain coincident MLS v4 and v5 water vapor and temperature profiles, leading to an inter-comparison between Pico-Light and Aura-MLS water vapor and temperature retrievals. Results from the comparison are in line with previous reported studies . Here, differences in the mid-latitude stratosphere and upper troposphere (20–316 hPa) are within 7 % and 64 % respectively. Largest differences with MLS v4 occurring within the upper troposphere nearby the cold point tropopause. The v5 MLS data have been corrected for observed dry bias nearby the tropopause, allowing to partially solve the observed discrepancies. Additionally, on February 19, the hygrometer has flown within an air filament from polar latitudes most of the flight for which a signature is observed on the water vapor profile and confirmed with ozone reanalysis from ERA 5and potential vorticity from MIMOSA advection model.


Retina ◽  
2019 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Baike Zhang ◽  
Cheng Li ◽  
Yong Jia ◽  
Xiaodan Li ◽  
Lisha Guo ◽  
...  

Author(s):  
Cory M. Simon ◽  
Carlo Carraro

In the two-balloon experiment, two rubber balloons are connected and allowed to exchange gas. Owing to the non-monotonic relationship between the radius of the balloon and the pressure of gas inside it, the two-balloon system presents multi- and in-stabilities. Herein, we consider a two-adsorbent system, where two different adsorbents are allowed to exchange gas. We show that, for rigid adsorbents, the thermodynamic equilibrium state is unique. Then, we consider an adsorbent–balloon system, where an adsorbent exchanges gas with a rubber balloon. This system can exhibit multiple states at thermodynamic equilibrium– two (meta)stable and one unstable. The size of the balloon, pressure of gas in the balloon, and partitioning of gas between the adsorbent and the balloon differ among the equilibrium states. Temperature changes and the addition/removal of gas into/from the adsorbent–balloon system can induce catastrophe bifurcations and show hysteresis. Furthermore, the adsorbent–balloon system exhibits a critical temperature where, when approached from below, the discrepancy of balloon size between the two (meta)stable states decreases and, beyond, bistability is impossible. Practically, our findings preclude multiple partitions of adsorbed gas in rigid, mixed-linker or stratified metal-organic frameworks and may inspire new soft actuator and sensor designs.


2019 ◽  
Vol 3 ◽  
pp. 6
Author(s):  
Amaury Barral ◽  
Quentin Louis ◽  
Clément Brochet ◽  
Julie André ◽  
Anthony Guillen ◽  
...  

This article studies the sound produced by nuts of different shapes swirling in an elastic rubber balloon. First, the sound is studied experimentally, both in terms of frequency and amplitude. Regarding the frequency components of the sound, we show that they can be divided into two main contributions – one due to the oscillations of the elastic membrane, the other due to the hits of the nut against the balloon – and present models to describe the frequency’s dependence on the main parameters of the system. We analysed the influence of several parameters such as the balloon’s geometry, the nut’s geometry and its mass.


2018 ◽  
Vol 8 (10) ◽  
pp. 2009 ◽  
Author(s):  
Kazuki Koseki ◽  
Takuma Matsuo ◽  
Shuichi Arikawa

A super pressure balloon (SPB) is an aerostatic balloon that can fly at a constant altitude for an extended period. Japan Aerospace Exploration Agency (JAXA) has been developing a light-weight, high strength balloon made of thin polyethylene films and diamond-shaped net with high tensile fibers. Previous investigations proved that strength requirements on SPB members are satisfied even though the net covering the SPB sometimes becomes damaged during the inflation test. This may be due to non-uniform expansion, which causes stress concentration, however, no method exists to confirm this hypothesis. In this study, we tested a new method called Simplified Digital Image Correlation method (SiDIC) to check if it can measure the displacement of the SPB by using a rubber balloon. After measuring the measurement accuracy of the Digital Image Correlation method (DIC) and SiDIC, we applied both DIC and SiDIC to a rubber balloon covered just with the net. Interestingly, SiDIC entailed a smaller amount of data but could measure the deformation more accurately than DIC. In addition, assuming the stress concentration, one part of the net was bonded to the balloon to restrict the deformation. SiDIC properly identified the undeformed region.


2018 ◽  
Author(s):  
Cory Simon ◽  
carlo carraro

<div>In the two-balloon experiment, two rubber balloons are connected and allowed to exchange gas. Owing to the non-monotonic relationship between the radius of the balloon and the pressure of gas inside of it, the two-balloon system presents multi- and in-stabilities.</div><div><br></div><div>Herein, we consider a two-adsorbent system, where two different adsorbents are allowed to exchange gas. We show that, for rigid adsorbents, the thermodynamic equilibrium state is unique.</div><div><br></div><div>Then, we consider an adsorbent-balloon system, where an adsorbent exchanges gas with a rubber balloon. This system can exhibit multiple states at thermodynamic equilibrium-- two (meta)stable and one unstable. The size of the balloon, pressure of gas in the balloon, and partitioning of gas between the adsorbent and the balloon differ among the equilibrium states. Temperature changes and the addition/removal of gas into/from the adsorbent-balloon system can induce catastrophe bifurcations and show hysteresis. Furthermore, the adsorbent-balloon system exhibits a critical temperature where, when approached from below, the discrepancy of balloon size between the two (meta)stable states decreases and, beyond, bistability is impossible.</div><div><br></div><div>Practically, our findings preclude multiple partitions of adsorbed gas in rigid mixed-linker metal-organic frameworks and may inspire new soft actuator and sensor designs.</div>


Sign in / Sign up

Export Citation Format

Share Document