retinal pathways
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 7)

H-INDEX

16
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Xuehao Ding ◽  
Dongsoo Lee ◽  
Satchel Grant ◽  
Heike Stein ◽  
Lane McIntosh ◽  
...  

The visual system processes stimuli over a wide range of spatiotemporal scales, with individual neurons receiving input from tens of thousands of neurons whose dynamics range from milliseconds to tens of seconds. This poses a challenge to create models that both accurately capture visual computations and are mechanistically interpretable. Here we present a model of salamander retinal ganglion cell spiking responses recorded with a multielectrode array that captures natural scene responses and slow adaptive dynamics. The model consists of a three-layer convolutional neural network (CNN) modified to include local recurrent synaptic dynamics taken from a linear-nonlinear-kinetic (LNK) model \cite{ozuysal2012linking}. We presented alternating natural scenes and uniform field white noise stimuli designed to engage slow contrast adaptation. To overcome difficulties fitting slow and fast dynamics together, we first optimized all fast spatiotemporal parameters, then separately optimized recurrent slow synaptic parameters. The resulting full model reproduces a wide range of retinal computations and is mechanistically interpretable, having internal units that correspond to retinal interneurons with biophysically modeled synapses. This model allows us to study the contribution of model units to any retinal computation, and examine how long-term adaptation changes the retinal neural code for natural scenes through selective adaptation of retinal pathways.


2021 ◽  
pp. 100026
Author(s):  
Alan W. Kong ◽  
Marcus L. Turner ◽  
Hoover Chan ◽  
Robert L. Stamper ◽  
Benjamin F. Arnold ◽  
...  

2020 ◽  
Vol 9 (11) ◽  
pp. 14
Author(s):  
Alan W. Kong ◽  
Luca Della Santina ◽  
Yvonne Ou
Keyword(s):  

Author(s):  
Saad Idrees ◽  
Matthias-Philipp Baumann ◽  
Maria M. Korympidou ◽  
Timm Schubert ◽  
Alexandra Kling ◽  
...  

AbstractVisual perception remains stable across saccadic eye movements, despite the concurrent strongly disruptive visual flow. This stability is partially associated with a reduction in visual sensitivity, known as saccadic suppression, which already starts in the retina with reduced ganglion cell sensitivity. However, the retinal circuit mechanisms giving rise to such suppression remain unknown. Here, we describe these mechanisms using electrophysiology in mouse, pig, and macaque retina, 2-photon calcium imaging, computational modeling, and human psychophysics. We find a novel retinal processing motif underlying retinal saccadic suppression, “dynamic reversal suppression”, which is triggered by sequential stimuli containing contrast reversals. This motif does not involve inhibition but relies on nonlinear transformation of the inherently slow responses of cone photoreceptors by downstream retinal pathways. Two further components of suppression are present in ON ganglion cells and originate in the cells’ receptive field surround, highlighting a novel disparity between ON and OFF ganglion cells. Our results are relevant for any sequential stimulation encountered frequently in naturalistic scenarios.


Biomolecules ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 867 ◽  
Author(s):  
Alexey M. Petrov ◽  
Artem A. Astafev ◽  
Natalia Mast ◽  
Aicha Saadane ◽  
Nicole El-Darzi ◽  
...  

In mammalian retina, cholesterol excess is mainly metabolized to oxysterols by cytochromes P450 27A1 (CYP27A1) and 46A1 (CYP46A1) or removed on lipoprotein particles containing apolipoprotein E (APOE). In contrast, esterification by sterol-O-acyltransferase 1 (SOAT) plays only a minor role in this process. Accordingly, retinal cholesterol levels are unchanged in Soat1−/− mice but are increased in Cyp27a1−/−Cyp46a1−/− and Apoe−/− mice. Herein, we characterized Cyp27a1−/−Cyp46a1−/−Soat1−/− and Cyp27a1−/−Cyp46a1−/−Apoe−/− mice. In the former, retinal cholesterol levels, anatomical gross structure, and vasculature were normal, yet the electroretinographic responses were impaired. Conversely, in Cyp27a1−/−Cyp46a1−/−Apoe−/− mice, retinal cholesterol levels were increased while anatomical structure and vasculature were unaffected with only male mice showing a decrease in electroretinographic responses. Sterol profiling, qRT-PCR, proteomics, and transmission electron microscopy mapped potential compensatory mechanisms in the Cyp27a1−/−Cyp46a1−/−Soat1−/− and Cyp27a1−/−Cyp46a1−/−Apoe−/− retina. These included decreased cholesterol biosynthesis along with enhanced formation of intra- and extracellular vesicles, possibly a reserve mechanism for lowering retinal cholesterol. In addition, there was altered abundance of proteins in Cyp27a1−/−Cyp46a1−/−Soat1−/− mice that can affect photoreceptor function, survival, and retinal energy homeostasis (glucose and fatty acid metabolism). Therefore, the levels of retinal cholesterol do not seem to predict retinal abnormalities, and it is rather the network of compensatory mechanisms that appears to determine retinal phenotype.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Ádám Jonatán Tengölics ◽  
Gergely Szarka ◽  
Alma Ganczer ◽  
Edina Szabó-Meleg ◽  
Miklós Nyitrai ◽  
...  

Abstract In the visual system, retinal ganglion cells (RGCs) of various subtypes encode preprocessed photoreceptor signals into a spike output which is then transmitted towards the brain through parallel feature pathways. Spike timing determines how each feature signal contributes to the output of downstream neurons in visual brain centers, thereby influencing efficiency in visual perception. In this study, we demonstrate a marked population-wide variability in RGC response latency that is independent of trial-to-trial variability and recording approach. RGC response latencies to simple visual stimuli vary considerably in a heterogenous cell population but remain reliable when RGCs of a single subtype are compared. This subtype specificity, however, vanishes when the retinal circuitry is bypassed via direct RGC electrical stimulation. This suggests that latency is primarily determined by the signaling speed through retinal pathways that provide subtype specific inputs to RGCs. In addition, response latency is significantly altered when GABA inhibition or gap junction signaling is disturbed, which further supports the key role of retinal microcircuits in latency tuning. Finally, modulation of stimulus parameters affects individual RGC response delays considerably. Based on these findings, we hypothesize that retinal microcircuits fine-tune RGC response latency, which in turn determines the context-dependent weighing of each signal and its contribution to visual perception.


2019 ◽  
Author(s):  
Larissa Höfling ◽  
Philipp Berens ◽  
Günther Zeck

ABSTRACTRetinal implants are used to replace lost photoreceptors in blind patients suffering from retinopathies such as retinitis pigmentosa. Patients wearing implants regain some rudimentary visual function. However, it is severely limited compared to normal vision because non-physiological stimulation strategies fail to selectively activate different retinal pathways at sufficient spatial and temporal resolution. The development of improved stimulation strategies is rendered difficult by the large space of potential stimuli. Here we systematically explore a subspace of potential stimuli by electrically stimulating healthy and blind mouse retina in epiretinal configuration using smooth Gaussian white noise delivered by a high-density CMOS-based microelectrode array. We identify linear filters of retinal ganglion cells (RGCs) by fitting a linear-nonlinear-Poisson (LNP) model. Our stimulus evokes fast, reliable, and spatially confined spiking responses in RGC which are accurately predicted by the LNP model. Furthermore, we find diverse shapes of linear filters in the linear stage of the model, suggesting diverse preferred electrical stimuli of RGCs. Our smooth electrical stimulus could provide a starting point of a model-guided search for improved stimuli for retinal prosthetics.


2018 ◽  
Vol 14 (11) ◽  
pp. e1006560 ◽  
Author(s):  
Yusuf Ozuysal ◽  
David B. Kastner ◽  
Stephen A. Baccus

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
William N Grimes ◽  
Jacob Baudin ◽  
Anthony W Azevedo ◽  
Fred Rieke

Stimulus- or context-dependent routing of neural signals through parallel pathways can permit flexible processing of diverse inputs. For example, work in mouse shows that rod photoreceptor signals are routed through several retinal pathways, each specialized for different light levels. This light-level-dependent routing of rod signals has been invoked to explain several human perceptual results, but it has not been tested in primate retina. Here, we show, surprisingly, that rod signals traverse the primate retina almost exclusively through a single pathway – the dedicated rod bipolar pathway. Identical experiments in mouse and primate reveal substantial differences in how rod signals traverse the retina. These results require reevaluating human perceptual results in terms of flexible computation within this single pathway. This includes a prominent speeding of rod signals with light level – which we show is inherited directly from the rod photoreceptors themselves rather than from different pathways with distinct kinetics.


2018 ◽  
Author(s):  
William N Grimes ◽  
Jacob Baudin ◽  
Anthony Azevedo ◽  
Fred Rieke

AbstractStimulus or context dependent routing of neural signals through parallel pathways can permit flexible processing of diverse inputs. For example, work in mouse shows that rod photoreceptor signals are routed through several retinal pathways, each specialized for different light levels. This light level-dependent routing of rod signals has been invoked to explain several human perceptual results, but it has not been tested in primate retina. Here we show, surprisingly, that rod signals traverse the primate retina almost exclusively through a single pathway, regardless of light level. Indeed, identical experiments in mouse and primate reveal large differences in how rod signals traverse the retina. These results require reevaluating human perceptual results in terms of flexible computation within this single pathway. This includes a prominent speeding of rod signals with light level – which we show is inherited directly from the rods photoreceptors themselves rather than from different pathways with different kinetics.


Sign in / Sign up

Export Citation Format

Share Document